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Abstract

Motivated by recent research in abstract model checking, we
present a new approach to inferring dependent types. Unlike many
of the existing approaches, our approach does not rely on program-
mers to supply the candidate (or the correct) types for the recursive
functions and instead does counterexample-guided refinement to
automatically generate the set of candidate dependent types. The
main idea is to extend the classical fixed-point type inference rou-
tine to return a counterexample if the program is found untypable
with the current set of candidate types. Then, an interpolating the-
orem prover is used to validate the counterexample as a real type
error or generate additional candidate dependent types to refute the
spurious counterexample. The process is repeated until either a real
type error is found or sufficient candidates are generated to prove
the program typable. Our system makes non-trivial use of “linear”
intersection types in the refinement phase.

The paper presents the type inference system and reports on the
experience with a prototype implementation that infers dependent
types for a subset of the Ocaml language. The implementation
infers dependent types containing predicates from the quantifier-
free theory of linear arithmetic and equality with uninterpreted
function symbols.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Model checking; F.3.1 [Log-
ics and Meaning of Programs]: Specifying and Verifying and Rea-
soning about Programs—Mechanical verification; F.3.2 [Logics

and Meaning of Programs]: Semantics of Programming Languages—

Program analysis; F.3.3 [Logics and Meaning of Programs]: Stud-
ies of Program Constructs—Type structure

General Terms  Algorithms, Languages, Theory, Verification

Keywords Dependent types, Intersection types, Interpolation,
Counterexamples, Type inference

1. Introduction

This paper follows the work on applying dependent types to check-
ing complex properties of programs that are beyond the reach of
conventional type systems like ML types. In this paper, by depen-
dent types, we mean refinement types [14] that embed first-order
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let rec mult x y =
if x <= 0 || y <= 0 then
0
else
x + mult x (y - 1)
in assert (100 <= mult 100 100)

Figure 1. The multiplication example.

logic formulas. For instance, suppose we want to check that the as-
sertion never fails in the program shown in Figure 1. (Here, we use
the Ocaml syntax.)

One way to check the assertion is by giving mult the following
dependent type.!

T :int = y:int —
{u:int | (x >0Ay>0=u>zx)
ANy <0=u>0)}

The type says that mult takes integers x and y, and returns an
integer that is at least as large as z if z > 0 and y > 0, and non-
negative if y < 0. (As usual, = binds weaker than other logical
operators, and — associates to the right.) Indeed, the type is a valid
type for mult and is sufficient to prove that the assertion does not
fail. Note that the type is neither the strongest (i.e., the most precise)
type nor the weakest necessary type that can be assigned to mult
to prove the assertion. The strongest type for mult would be

z:int — y:int —
{u:int | (x >0Ay>0=>u=x Xxy)
ANz <O0Vy<0=u=0)}

which contains non-linear arithmetic, as expected.

This paper presents a method for inferring sufficiently strong
dependent types to check the given properties of a program. Our
approach avoids computing the strongest or the weakest necessary
type, and instead returns some type that is sufficient to prove the
property when terminating with success.

Many existing dependent type systems (e.g., [4, 10, 40]) require
the programmer to annotate recursive functions like mult with
the correct types. Other systems [14, 34] require the domain of
candidate types to be pre-defined and form a finite-height lattice
so that the type checking can be implemented as a fixed-point
algorithm that infers the strongest types in a bottom-up manner.

We propose a different approach to checking and inferring de-
pendent types that does not require a pre-defined set of correct or
candidate dependent types. Our approach is inspired by research in
counterexample guided abstraction refinement (CEGAR) for model
checking [3, 9, 16, 28]. The core of our system is a CEGAR loop
that iteratively refines the lattice of candidate dependent types until
either the program is found to be actually untypable or the lattice

'The type syntax is borrowed from Augustsson [1] (also used in [12, 22,
23, 34, 37)).
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Figure 2. The syntax of the simple functional language.

becomes refined enough to type check the program. We start with
a coarse lattice containing few candidates and gradually add types
that are sufficient to refute the spurious counterexamples encoun-
tered during the CEGAR iteration.

A counterexample in our system is an “unwound” slice of the
program that is untypable with the current candidates. The refine-
ment phase decides whether the slice can be typed if the types are
not confined to the candidates, and if so, generates new candidates
from the inferred typing (if not, then the program is really unty-
pable). For this, we employ recent techniques from both type sys-
tems and model checking research: linear intersection types [21]
and interpolation [27]. We use linear intersection type inference to
infer a type derivation “shape” that is sufficient for typing the coun-
terexample, and we use an interpolating theorem prover to quickly
compute good candidate types from the type derivation (in particu-
lar, without explicit quantifier elimination).

The rest of the paper is organized as follows. Section 2 intro-
duces the language and the dependent type system. The main con-
tribution of the paper is the CEGAR-inspired type inference system
described in Sections 3, 4, 5, and 6. While the paper mostly focuses
on the assertion checking application for simplicity, it is easy to ex-
tend the system to more general program specification checking as
discussed in Section 7. Section 8 describes the prototype imple-
mentation for a subset of the Ocaml language, Section 9 discusses
related work, and Section 10 concludes. The proofs of the key re-
sults appear in Appendix C.

2. Preliminaries

We focus on a small functional language shown in Figure 2. We
briefly describe the syntax. A program, d, is a finite set of function
definitions, F’ T = e, which defines a function named F' with the
formal parameters 7 and the body e. The notation @ denotes a
possibly empty sequence. We often use letters u, , y, z, u;, etc. to
range over program variables and first-order logic variables, and
letters F', G, H, F3, etc. to range over function names. Functions
can be mutually recursive in that the body of a function may refer
to other functions, including itself. We assume that each function
is closed (except for the free function names). We also assume that
every function name is unique and that there is a function named
main that takes no arguments. Note that nested function definitions
can be supported via lambda lifting [19].

An expression, e, is a variable, a constant c, a function name, a
let expression let x = e1 ineg, a (constant or function) application
e x, a conditional branch if x then e; else ez, or an assertion
assert e. Constants include integer and boolean constants such as
0 and true, as well as integer and boolean operations such as +
and <. For simplicity, we restrict branch condition and function
arguments to just variables.”

We restrict the body of a function to continuation passing style
(CPS) so that a function does not return. We also impose the CPS
restriction to the body of a let expression (i.e., ¢’ in letz =eine’)
and those of a branch (i.e., e; and es in if x then e; else e2)
so that they are also non-returning. As usual, non-returning expres-
sions (i.e., non-partial function applications, let expressions, and
conditional expressions) are restricted to occur only in a continua-

2 The implementation lifts this restriction by online A-normalization [13].
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Figure 3. The non-CPS evaluation contexts.
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Figure 4. The semantics of the simple functional language.

tion context (i.e., not in a non-CPS evaluation context £/ shown in
Figure 3). CPS is only enforced on user-defined functions so that
constant operations need not be CPS.

The CPS restriction is imposed only to simplify the exposition.
Non-CPS expressions may be supported indirectly via CPS conver-
sion or directly by extending the type system with conditional types
and union (i.e., disjunctive) types.’

The rest of the syntax is straightforward. As usual, a function
application associates to the left so that eg e1 e2 = (ep e1) e2. We
write eg < for the series of applications eg e1 €2 ... e, Where

€ =ei1,ea,...,en. Wewrite e1; ez for Let x = eg in ez such that
x ¢ free(ez). Without loss of generality, we assume that bound
variables are distinct.

Note that, because of higher-order functions and partial applica-
tions, function calls are not syntactically obvious, and one syntactic
occurrence of a function name may end up being called from mul-
tiple places.

We define the call-by-value semantics of the language as a
small-step reduction relation from states to states. A state is a run-
time expression e that extends the source expressions with values v
and a special failure state, defined as follows.

vi=c| F|vivs
en=---|v|fail

(We overload the symbol e to range over run-time expressions when
it is clear from the context.) We restrict the application F' o (resp.
¢ ) tobe avalue only when it is partial, that is, only when the arity
of F' (resp. c) is greater than |7p| Note that a partial application
denotes a closure value.

Figure 3 defines the non-CPS evaluation contexts. Figure 4
shows the reduction rules. The reduction rules are mostly straight-
forward. In CST, the notation arity(c) denotes the arity of the con-
stant operation c. Here, [c] is the relation denoting the semantics
of ¢, so that, for example [+](¢, j) = ¢ + j for all integers 4 and j.
AS1 returns a dummy value 0, and AS2 aborts the program with an
assertion failure. Note that, because of CPS, APP, LET, IF1, and
IF2 only occur at the top-level.

3 The latter approach is taken in the implementation discussed in Section 8.
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Figure 5. The syntax of dependent types.
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Figure 6. The type checking rules.

We define a run of a program to be a sequence of reductions
from the initial state epain Where main () = emin € d. (Here, ()
denotes the empty argument sequence.) We write e —; €’ for zero
or more reductions from e to e’

We assume that a program is typable with the standard simple
type system” so that it is guaranteed to not get stuck, for example,
by trying to use an integer as a function. Therefore, a program either
runs forever safely (due to CPS, a program cannot return), or aborts
with an assertion failure. We call a program safe if its run does not
cause an assertion failure.

DEFINITION 2.1 (Safety). A program d is said to be safe if
€main 7 fail where main () = epain € d.

Being simply-typable does not imply safety. In the following, we
present a dependent type system that guarantees the safety of ty-
pable programs.

2.1 Dependent Type System

Our dependent type system is essentially the previous systems [12,
34, 37] extended with intersection types. The reason for adding
intersection types is not just to increase expressibility; it is actually
crucial to the type inference system described later in the paper.

Recall that a program is simply-typed. For each expression e in
the program, we write sty(e) to denote its simple type. A simple
type, s, is formally defined by the following grammar:

B := int|bool

s u= x|Bls—s
Here, B is called base type, and the dummy type x represents the
type of a CPS expression.

Figure 5 shows the syntax of dependent types. Here, {u: B | 6}
is a refinement base type that refines the base type B by the formula

4See Appendix A for the definition of the simple type system.

0 which is a formula in some first-order theory. We sometimes
abbreviate {u:B | 8} simply as B when 0 is a tautology (e.g.,
{u:int | T} = int). Intuitively, {u:B | 8} denotes the type of
some value u of the base type B satisfying the formula 6. The type
x:0 — T is a dependent function type consisting of the argument
type o and the return type 7. Intuitively, :0 — 7 denotes the type
of a function (or a constant operation) that returns a value of the
type 7[y/x] when applied to any argument y of the type o.

The type {z:B | 6} binds = within 6. Likewise, z: ¢ — 7
binds x in 7 (but not in o). We sometimes abbreviate x:0 — T as
o — 7 when z does not occur free in 7. Types are equivalent up to
renaming of bound variables.

We use the symbol o to distinguish types with possible top-level
intersections from those without (for which we use 7). Here, the
intersection operator A is associative, commutative, and idempotent
(ACI), so that, for example, 7 A 7 = 7. We sometimes write /\l Ti
or A\ T for the type 71 A2 A -+ ATp suchthat {71,..., 7} =T
is a non-empty set. Note that, because of ACI, any o can be written
in such a form.

For any intersection of types A\, 7;, we enforce that each 7; is of
the same simple-type shape. Formally, the simple-type shape of o
is the simple type simple(o) defined inductively as follows:

stmple(z:0 — ) = simple(o) — simple(T)
simple({u:B | 6}) = B

simple(x) = %

simple(A\{r,...}) = simple(7)

Then, we enforce that for any type A\ T',simple(T) = simple(’)
for all 7,7’ € T'. This does not reduce expressibility because the
type system is a refinement type system [14] of the simple type
system, and so only the types of the same simple-type shape are
meaningful to intersect. Without loss of generality, we implicitly
assume that any dependent type o assigned to e in the dependent
type system satisfies simple(c) = sty(e).

Figure 6 shows the type checking rules of the dependent type
system. The judgements are of the form I';6 + e : 7 where I’
is a type environment mapping variables and function names to
types possibly containing top-level intersections (i.e., o’s), and 6
is a formula. The formula 6 is used to accumulate the assumptions
from nesting branch conditions.

We discuss each typing rule. VaB types base-type variables.
Note that the rule ignores the environment. Expressibility is not
reduced, however, because the assumption about x in the environ-
ment gets discharged at subtyping. The rule is borrowed from pre-
vious work [32, 34, 37]. VaF types function-type variables by
looking up the environment and selecting a type from the intersec-
tion. Here, as usual, I, z : o denotes the mapping I' U {z — o}
if z ¢ dom(I"), and is undefined otherwise. Fun is exactly like
VaF except that it is for function names. Cst types constants.
Here, ty(c) is some sound® dependent type for the constant ¢ (e.g.,
ty(+) = z:int — y:int — {w:int |u =z + y}).

Int1 and Int2 introduce intersection types. Here, I'y A I'2 is
defined as follows.

Fl /\FQ = {LEO—)Fl(LE)/\
U{z — ' (z)
U{z — T2(x)

€ dom(T'y) Az ¢ dom(T'2)}

l|_‘2(1’) | z € dom(T'1) Ndom(T'2)}
| x ¢ dom(T'1) A x € dom(T'2)}

x
x
We could have used a simpler set of rules that shares the environ-
ments of the sub-judgements because intersections are non-linear
(recall that A is ACI), but this format makes the introduction of
the linearity restriction smoother later in Section 5.2. Note that we

write A to distinguish judgements that can introduce top-level in-
tersections.

5 See Appendix B for the definition of a sound constant type.
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Figure 7. The subtyping rules.

Let is self-explanatory. Note that the typing for e; may intro-
duce top-level intersections. App types applications. Here, 7[z/y]
is the usual capture-avoiding substitution. App checks that the ac-
tual argument conforms to the formal argument type via the sub-
typing I'2;0 + o' < o. Figure 7 shows the subtyping rules,
which are a straightforward extension of those of the previous sys-
tems [12, 34, 37] with intersection types. In SubB, [I'] is the first-
order logic formula denoting the assumptions about the base-type
variables, and is formally defined as follows.

[TT = AM{A; Oilz/u] | T(z) = N{uw:B | 0:}}

The If rule types conditional expressions. Note that the assump-
tion about the branch condition (i.e., x) is recorded in the environ-
ment. Finally, Assert checks the assertion via subtyping.

We say that a type is closed if it has no free variables. Let
A be a top-level type environment mapping function names to
types. We say that o is a well-formed type for F' if o is closed
and simple(o) = sty(F). We say that A is a well-formed top-
level type environment if A(F) is well-formed for each F'. Unless
mentioned otherwise, we restrict A to range only over well-formed
top-level type environments in the rest of the paper.

Let us write Z:6 — 7 to abbreviate the function type

T1:01 —> +++ —> Tpi0On — T

where 776 = 71 101,...,%n:0yn. We define the notion of a well-

typed program.

DEFINITION 2.2 (Well-typed program). We write A + d if for
each function F''& = e € d, we have A, :ﬁ, T e : % for each
Ti :m%*i}’ZA(F) :/\1’7'1

We say that a program d is well-typed (equivalently, typable) if
there exists A such that A+ d.

Assuming that the types of the constants ¢y(c) are sound, the
type system ensures that a well-typed program does not cause an
assertion failure.

THEOREM 2.3 (Soundness). If A - d then d is safe.

The proof is analogous to that of the soundness result for similar
dependent type systems [12, 34, 37] and is omitted.

EXAMPLE 2.4. Let d consist of the following three functions. (We
elide A-normalization for readability.)

sumx y k =

ifz <Othenk yelsesum (z—1) (x +y) k
checkz =

assert (100 < z); check x
main () =

sum 100 0 check

Note that sum is a function that, given integers x and y, computes
Y+ D 0,2t and applies the continuation k£ to the result.
Thereforfe, d runs sgfely forever if 190 g Zie {0,...,100} 1, and
aborts with an assertion failure otherwise (i.e., it will run forever).
Assume that we are given the following constant types.

ty(<) = z:int — y:int — {u:bool |u =2z < y}
ty(—) = z:int — y:int — {u:int |u =z — y}
ty(+) = z:int — y:int — {w:int |u =z + y}
ty(i) = {u:int |u =14} wherei € {0,1,100}

We show that we can prove d to be safe with our type system
assuming that the underlying theory supports booleans and linear
arithmetic.

Let A be the following typing environment.

A(main) = () —
A(check) = {u:int | u > 100} — %
A(sum) = AT
where
T =
{z:{u:int |u > 100} = y:{u:int | u > 0} —
({u:int | uw > 100} — *) — *,
z:int = y:int = ({uiint |u >y} — %) = * }

(Here, () — «is the special function type for main having an empty
sequence of arguments. See Definition 2.2.)

It is a routine to check that A + d. Note that the type of sum
does not say that it actually returns (i.e., calls the continuation with)
Y+, 10,0} i, but only that it returns some integer at least as
large as 100 when called with z > 100 and y > 0, and some
integer at least as large as y unconditionally, which is sufficient for

typing d.

3. Type Inference Overview

We now present our CEGAR-inspired procedure that checks if the
given program d is typable, and if so, returns A such that A + d.
The inference procedure is a semi-algorithm as it is not guaranteed
to terminate, but it is sound and complete in that it is guaranteed
to return some correct typing when terminating with success and
reject the program as untypable only if it is actually untypable.
(In practice, we make the procedure give up after some number
of iterations, returning ‘“‘unknown.”)

The type inference maintains a lattice of candidate top-level
type environments, and repeatedly executes the following two al-
gorithms, one after the other.

e The fixed-point type inference algorithm checks if there exist
a typing for the program within the current candidates via a
fixed-point iteration over the lattice of candidate top-level type
environments. The algorithm returns a counterexample if the
program is found untypable with the current candidates. The
counterexample records the number of times the fixed-point
iteration was executed to reach the type error. Otherwise, the
program is found typable and the process exits by returning the
inferred typing. (Section 4)

e Given a counterexample, the refinement algorithm unwinds the
recursive definitions the number of times recorded in the coun-
terexample, generating a non-recursive program slice. Then, the
algorithm decides the slice’s typability completely (i.e., not re-
stricted to any candidates). If the slice is found untypable, then
so is the original, and the process exits. Otherwise, the depen-
dent types that are used to type the slice are added as the new
candidates to refine the lattice. This phase uses linear intersec-
tion type inference and interpolation to infer types for the un-
wound program slice. (Section 5)



The two components are both algorithms in that they are guaranteed
to terminate. The following sections describe the two components
in detail.

4. Fixed-point Type Inference

A candidate set © is a mapping from function symbols to a non-

empty finite set of dependent types with no top-level intersections

such that for all 7 € ©(F), 7 is closed and simple(T) = sty(F).
© induces the lattice A © defined as follows.®

NO ={A|VF.A(F)= AT where T C ©(F)}
For A1,Ay € A O, we order A1 < A, if for all F, we have

T1 O T> where A1 (F) = ATy and Ax(F) = A Ts. It is easy to
see that /\ © with < forms a lattice with the mapping AF. A 0 as
the top element and AF. A\ ©(F’) as the bottom element. Note that
except for the ones containing A @), any A € A © is a well-formed
top-level type environment.

We define the algorithm InferNext that takes A € A © and re-
turns the strongest typing A’ € /\ © for d that can be typed with A
(d is an implicit parameter to InferNext). More precisely, for A a
type environment (i.e., for all F', A(F) # A 0), InferNext(A) =
A’ such that foreach F @ = e € d,

N(F)= Nzd > +€OF) | A78; T ke x}

If A is not a type environment, then we take InferNext(A) = A.

InferNext(A) can be effectively computed assuming that we
can decide the typing judgements I';0 + e : 7. The main com-
plexity involved here is deciding the subtyping relation SubB (cf.
Figure 7), which can be done by the help from a theorem prover
supporting the underlying first order theory.

It is easy to see that if a fixed point of InferNext is a type
environment then it is a valid typing for d. That is,

THEOREM 4.1. Suppose A € \ © is a type environment such that
InferNext(A) = A. Then, we have A F d.

Moreover, it is easy to show that InferNext is monotonic. Then, the
following theorem is immediate from the fact that /A © is a finite
(and therefore, a complete) lattice.

THEOREM 4.2. The least fixed point A of InferNext is a type
environment if and only if there exists A" € J\ © such that A’ \- d.

Therefore, to decide if d is typable with the current can-
didate set, it suffices to compute the least fixed point A =
Ll;c., InferNext' (AF. A\ ©(F)) and check that A(F) # A for
all F. If such A exists, we stop the CEGAR process and return A
as the inferred typing for d.

Otherwise, we have A = InferNext'(AF. A ©(F')) such that
A(F) = A\ for some F at some iteration ¢. In this case, we pass
the pair (F,i) as the counterexample to the refinement algorithm
described in Section 5.

EXAMPLE 4.3. Let d consist of the following four functions.

Frxy=ifxthen FyxelseGuay
Gry=asserty;Fyx

Hzx=assertz;Hx

main () = if true then F true false else H false

Let the current candidate set be © shown below.
O(main) = {() — *}
O(F) = {bool — bool — x,
{u:bool | u = true} — {u:bool | u = false} — *}
(&) ={
{u:bool | u = false} — {u:bool | u = true} — *}
O(H) = {{u:bool | L} — x}

6 Here, A’s are allowed to range over non type environments.

Let Ay be the least element of the lattice A ©, that is,

A = {main — A O(main), F — A O(F),
G— A\NO(G),H— NO(H)}

Then, InferNext(Ao) = A1 where

Aj(main) = () — *

A1 (F) = {u:bool | u = true} — {u:bool | u = false} — *
A1 (G) = {u:bool | u = false} — {u:bool | u = true} — *
A1(H) = {u:bool | L} — *

A is a type environment but A; # Ag. Therefore, iterating one
more time, we get InferNext(A1) = Az where Az(main) =
Aj(main), A2(G) = A1(G), A2(H) = A1(H), but Ax(F) =
A\ 0. Because Az (F) is not a type, we have reached the fixed point
and can return (F, 2) as the counterexample.

5. Refinement

Recall that the goal of the refinement phase is to check if the coun-
terexample is spurious by constructing a non-recursive program
fragment from the counterexample and checking if the fragment is
typable, not restricted to any candidate set. And if so, we build new
candidates from the inferred typing, and otherwise, we can reject
the program as untypable.

We separate the refinement phase into the following three sub-
phases, executed in order.

e We take the counterexample (F,4) and unwind the recursive
definitions ¢ times from F' to produce a non-recursive program
fragment. (Section 5.1)

e We infer the type derivation shape that is sufficient for typing
the unwound fragment via linear intersection type inference.
(Section 5.2)

Given the linear derivation shape, we generate constraints con-
sisting of first-order logic formulas and predicate variables, and
check if the constraints are satisfiable by using an interpolat-
ing theorem prover. If not, then the unwound fragment is unty-
pable, and we stop the CEGAR process declaring the program
untypable. Otherwise, from the typing inferred for the fragment,
we produce new candidate types that are sufficient to refute the
counterexample. (Sections 5.3 and 5.4)

Next, we describe the three sub-phases in detail.

5.1 Unwinding

The unwinding phase is the simplest phase of the refinement pro-
cess. Given a counterexample (F’, i), we inline recursive definitions
¢ times from F' in d, leaving /eaf function name occurrences with no
definitions. The resulting program fragment, d’, is then guaranteed
to be free of recursive definitions.

We demonstrate the process by unwinding the program d from
Example 4.3. Recall that we are given the counterexample (F), 2).
Then, unwinding produces the following program slice d':

Gixzy=asserty; Fayzx
Fory=if xthen FzyxelseGazy
Fixy=if rthen FhayrelseGixy

Here, Fh, F», F3, Fy, G1,G2 are inlined function names created
fresh. Note that F3, Fy, and (G2 are leaf functions. We maintain
the mapping Inames that maps the original function names of
d to the set of its inlined copies in d’. In the above example,
Inames(F) = {F1, F», F3, Fi}, Inames(G) = {G1, G2}, and
Inames(H) = Inames(main) = (). Note that the unwinding only



contains functions that are involved in the counterexample, that is,
main and H (as well as F' and G beyond depth 2) are sliced out.”

We discuss the key properties of unwinding. First, because d
is simply typable, d’ is also simply typable, and we assume that
sty(e) is given for each expression e in d'. Let us extend the type
judgement - to leaf function name occurrences in the obvious way
by allowing any well-formed type for the function to be assigned.
The following is immediate.

THEOREM 5.1. Suppose A + d and d' is an unwinding of d.
Let A’ be a top-level type environment for d' such that for each
G € Inames(F), A'(G) = A(F). Then, A’ - d'.

Therefore, showing that d’ is untypable is sufficient for showing
that d is untypable.

As a contrapositive, we show that the current candidate set is
insufficient for typing d’, using candidates for the originals for the
inlined functions.

THEOREM 5.2. Let d’ be the unwinding of d produced from the
counterexample passed from the fixed-point type inference phase
using the candidate sets ©. Let ©' be a candidate set for d' such
that for each G € Inames(F), ©'(G) = O(F). Then, there exists
no A € \© suchthat A+ d'.

The above theorems justify us calling (F) %) a counterexample.
That is, the unwinding d’ produced from (F), 7) is a counterexample
to the typability of d under the current candidate set.

5.2 Linear Intersection Types

The goal of the rest of the refinement phase is to check if the un-
winding d’ is typable, without confining the types of the functions
to any candidate set. An issue here is that the type system allows
unboundedly many intersections, and so we cannot naively derive
a type inference algorithm from the type checking rules from Sec-
tion 2.1. To overcome the issue, we use the observation that only
linear intersections are needed for typing d’ and that the linear in-
tersection “shapes” can be inferred. The crucial properties of d’ that
enable this is that d’ does not contain recursive definitions and is
simply typable. Linearity is also important to the constraint solving
phase of the refinement algorithm because it ensures the acyclicity
of the generated constraints (cf. Section 5.3).

Informally, in the linear intersection dependent type system F*,
for a non-base-type binding x : o, the top-level intersections of o
determine how the variable x is used. For example, it is possible to
derive

I'y; TH if ythenzyelsexy : *
where I's = y :bool, z:(bool — %) A (bool — %), but

I'; TH if ythenzyelsexy : *
[3; T ifythenzyelsexy: x

where I'y = y :bool,x :bool — *xand I's = y : bool,x:
(bool — %) A (bool — %) A (bool — *).

Essentially, ' is equivalent to - except that it disallows non-
linear use of function-type bindings. The linearity restriction is only
imposed on function types; base types are used non-linearly.

We formally define the type system H'. The syntax of linear
intersection types is equivalent to that of F (cf. Figure 5). But
now, A is neither associative, commutative, nor idempotent. We
also modify the typing rules so that the rules in Figure 8 replace
VaB, VaF, Fun, Cst and Let from Figure 6 and SubI1 and
SublI2 from Figure 7. The rest of the rules remain the same, just
replacing - with F, and -, with -} . We eliminate any intersection
of base types via the equivalence {u:B |61} A {u:B |62} =

7The implementation performs additional optimizations that can further
reduce the size of the unwinding by slicing out more irrelevant parts.

sty(x) is base isBaseEnv(I")
0 2: {u:B|u=2a}

VaB!

sty(x) is not base isBaseEnv(I)

e 0F o7

VaF!

Fisleaf isBaseEnv(I)
IFr0F For

isBaseEnv(I")
50k c:ty(e)

Cst?! Fun1?!

dom(l“% are all function names isBaseEnv(I")
FZ=eccd T, 76\X;Tr e:x
X = {x; € {2} \ free(e) | sty(z:) not base}

I, I F:76 > x0F F:2:6 — *

Fun2?

I';0F e o To,z:0\ X;0 Fleg %
X ={z | z ¢ free(e2) and sty(z) not base}

I't ATg;0 Flletz=c;ines : %

Let?!

Fl—lalgai Fl—laggaé
I'H o1 Aog < o) Ao

SubI!

Figure 8. The key ' typing rules.

{u:B | 61 A 02}. As with |-, we assume that any type o assigned
to an expression e satisfies simple(o) = sty(e).

We discuss the new rules. VaB' replaces VaB. Here, the
condition isBaseEnv(I") says that all bindings in I are base types,
that is, dom(I") does not contain function names and for all z €
dom(T"), T'(z) is a base type. VaF* replaces VaF and requires that
the only function-type binding in the environment is x. Similarly,
Cst! replaces Cst and requires that I" contains no function-type
bindings.

Funl' and Fun2® replace Fun. Funl’ types leaf function
names and is much like VaF!. Fun2' types non-leaf function
names. (Note that judgements are implicitly parameterized by the
unwound fragment d’.) Unlike Fun, it type checks the body of the
function in the sub-derivation. Note that this does not lead to an
infinite derivation tree because d’ does not contain recursive defi-
nitions. Here, W\X denotes the bindings Z:6 with the bindings
for X removed. We need this because linearity implies that a non-
base-type variable that are not used in e cannot be bound in the
environment. Let® similarly takes care of unused non-base vari-
able bindings. Finally, SubI' replaces SubI1 and SubI2 from
Figure 7. It just structurally applies subtyping inside intersections.

Note that any unwound program fragment has a unique root
function from where the unwinding started and whose name does
not occur free in the unwinding. We define the notion of linearly
typable programs.

DEFINITION 5.3 (Linearly typable programs). Let d' be an un-
wound program fragment with F' as the root function. Then, we
write A FY d' if A FY F . 1 for some 7. (Incidentally, it must be
the case that 7 = A(F).)

The following theorem states that we can decide if d’ is typable
by deciding if d’ is linearly typable.

THEOREM 5.4. Let d’ be an unwound program fragment. Then,
the following are equivalent.

(1) There exists A such that A F* d'.
(2) There exists A\ such that A = d'.



We defer the proof to Appendix C.

Unlike F, F! is completely structural because the shape of a
derivation, including the number of intersections in the types, is
determined by how variables occur in d'. To infer the derivation
shape, we adopt the expansion-variable-based inference algorithm
of Kfoury and Wells [21], modified so that expansions are not ap-
plied to base-type bindings. For space, we refer to their paper [21]
for the details of the algorithm. The inferred shape satisfies all the
structural requirements of -, that is, everything except for the log-
ical validity premise at SubB.

More precisely, we introduce shape-only types that have holes
“—"1in place of first-order logic formulas, defined as follows.

*|{x:B|-}|z:6 > 7
= 7A'|5'1/\5'2

[STREN

Let shape-only type environment I'bea mapping from variables
and function names to 6’s, and fop-level shape-only type environ-
ment A be a mapping from functions names to 6’s. Then, linear in-
tersection type shape inference judgement I —Fle : 7 consists of
! rules, but using 7 (resp. &) wherever 7 (resp. o) appears, using
the hole — for formulas, and replacing SubB with the following
rule.

D —F{u:B | =} <{u:B| -}

We also replace formulas in constant types ty(c) with holes, pro-
hibit intersection of base types, and use types containing no inter-
sections for the unused bindings X at Fun2' and Let®. Then, the
linear intersection type shape inference infers a shape-only deriva-
tion AFld’. The fact that such a derivation exists is the conse-
quence of the fact that d’ is recursion free and is simply typable,®
and follows from well-known properties of intersection types (see,
e.g., [21]).

The linear intersection type shape inference is non-trivial in the
presence of higher-order functions. In fact, it is known that the
complexity of the inference is non-elementary time hard [30, 35].
But the expansion-variable-based algorithm appears to work well
in practice, perhaps because functions of high ranks,” which could
cause the inference to explode, are used sparingly in practice.

5.3 Constraint Generation and Constraint Solving

Having generated the derivation shape for d’, the next step is to
check if the shape can be turned into an actual F! derivation by
filling in the holes with first-order logic formulas. To this end,
we introduce predicate variables that serve as placeholders for
first-order logic formulas in the derivation. We use large letters
P, Q, etc. to range over predicate variables. We generate constraints
containing predicate variables and formulas from the underlying
theory, and use an interpolating theorem prover to solve for the
predicate variables.

We extend the syntax of dependent types to allow predicate
variables in place of formulas in refinement base types:

p = e|pz/y]

7 u= - |{u:B| Pp}
(We overload 7 to range over the extended types when it is clear
from the context.) The sequence of substitutions p is called pend-
ing substitutions [34] (or delayed substitutions [23]). Pending sub-
stitutions records the substitutions 7 [z /y] made at App so that, for
example, {u:B | P}[z/y] = {u:B | P[z/y]}. (The empty substi-
tution € is elided.)

8 Actually, typability under any type system that ensures normalization of
recursion-free terms is sufficient.

Roughly, a rank is the number of times a type can be nested in the left
hand side of —.

Let AF1d’ be the inferred derivation shape. Aisa mapping
from non-root functions in d’ to shape-only types. We build a
function type template A from A such that for each A(F) = &,
we have A(F) = o where o is & with its holes filled with fresh
predicate variables with empty pending substitutions. For example,

from the shape

A ={F~ z:{u:int | =} = *,G — z:{u:int | =} — +}
we make the template

A ={F ~ z:{u:int | P} = %, G — z:{u:int | Q} — *}

where P # Q. (Here, we write A to emphasize that it may contain
predicate variables.)

To generate constraints, we convert ' type checking rules to
constraint generation rules by modifying the base-type subtyping
rule SubB so that instead of checking logical validity, the premise
[C] A @ A 61 = 02 is recorded as a constraint. Here, we use
the symbol fto range over formulas possibly containing predicate
variables, (and reserve 6 for concrete formulas that do not contain
predicate variables). Then, having the template A at hand, we
follow the derivation shape and record the constraints that occur at
each SubB instance. Let C be the set of constraints obtained this
way. Note that C is a set of formulas containing predicate variables.

To define a solution for the constraints, we define the scope
variables of each P in the template A, written scopevars(P), to
be the set of variables that are allowed to appear free in a solution.
Formally, scopevars is a mapping from predicate variables to the
largest set of variables such that for any mapping S from predicate
variables to concrete formulas with free(S(P)) C scopevars(P)
for all P, S(o) is closed for all ¢ € ran(A). Here, S(o) denotes
o with its predicate variables P replaced by the concrete formula
S(P). Scope variables can be computed by a linear scan over
the template. For example, scopevars(P) = {z,u} for A
{F— z:0 = y:{u:int | P} — *}.

We say that S is a solution for C, written S |= C, if S(P) C
scopevars(P) for all P and for each § € C, S(6) is valid. It is

easy to see that if S is a solution, then S(A) ' d’ where S(A) is

defined {F' — S(A(F)) | F € dom(A)}.

5.3.1 Least Solution

To solve the constraints, we first compute the least solutions for
the predicate variables. The least solutions are used when comput-
ing interpolants in the second phase of the constraint solving (cf.
Section 5.3.2).

Note that each constraint in the generated set of constraints C is
either of the following forms. (Recall that = binds the weakest.)

(D) TUAO=0
@) UAO= Pp

where 6 and 6’ do not contain predicate variables and ¥ is a
conjunction of predicate variables with pending substitutions:

Uu=T|WAPp

Predicate variables appearing in a constraint are guaranteed to be
distinct. Furthermore, C is acyclic in the following sense.

THEOREM 5.5. The generated set of constraints C does not con-
tain constraints of the form {Pip; N0; = Piy1pi |1 <i<n}
for some n > 1 with Py = Ppy1.

We defer the proof to Appendix C. The result follows from the
fact that the derivation is linear. Indeed, cyclic constraints could be
generated if we had used the simple types to obtain the derivation
shape as seen Example 5.6 below.



Because of acyclicity, we can totally order predicate variables
via topological sort so that if there is a constraint of the form
PpA6O = Qp inC,then P < Q.

EXAMPLE 5.6. This example illustrates the importance of linearity

in avoiding cyclic constraints. Let the unwound fragment d’ consist

of the following functions.'?
Hfk=f0(Gfk)
Kx=assertz <0; Kx

Gfkx=fzk Frk=kx
main()=H F K

Let AF1d’ be the inferred linear intersection type shape. Then,
AH) = 7 A% = k:(z:{usint | =} — %) — *

where 7 = {u:int | —} — ({u:int | —} — %) — %. From A,
we get the template A such that A(H) = f:71 A2 — ... where
71 = {w:iint | P} — ...and 72 = {w:int | P2} — ..., for Py
and P, fresh. The set of constraints C generated from AR dis
acyclic, but induces the ordering P; < P». Hence, if we had used
simple-type shapes so that A(H) = f:# — ... instead, then we
would have P = P», and the constraints become cyclic. O

Thanks to acyclicity, we can systematically derive the least
solution for C in a bottom up manner, that is, in the ascending order
of <. (Although we call it the least solution, it is an actual solution
only if C is satisfiable.)

We describe the method to obtain the least solution for P having
obtained the least solutions for all ) < P. Let

{él :>Pp17é2:>Pp27‘”7én:>Ppn}

be the set of constraints in C of the form § = Pp. We set the least
solution for P to be

Least(P) = 3X. \/ Least(6:)p; "

where X = free(\/, Least(6;)p; ") \ scopevars(P). We explain
the construction. We first concretize each lowerbound 6; of Pp; by
substituting the least solutions for the predicate variables appearing
free in 6;. Note that such least solutions are already obtained. Then,
we reverse substitute the pending substitutions p; to obtain the
concretized lowerbounds for P, that is, Least(6;)p; * for each i.
The correctness of the construction requires the targets of p; to
not occur free in Least(0;), which can be met by renaming the
bound variables in the types. Finally, we take the disjunction of
the concretized lowerbounds, and existentially quantify all free
variables except for the scope variables of P. The latter ensures
that free(Least(P)) C scopevars(P).
The following is immediate from the construction of Least.

THEOREM 5.7. If C is satisfiable, then Least is the least solution
forC. That is, Least |= C, and for all solutions S such that S |= C,
Least(P) = S(P) forall P.

Thus, to check C’s satisfiability, it suffices to check whether

Least () is logically valid for each constraint 6 € C. And if so, we

have Least(A) F d’, and we can obtain new candidate types from

Least(A). (Recall that A is the template obtained from A such

that AF1d’.) While this is a sound and complete way to solve C and
generate new candidates, it tends to produce suboptimal candidates.

There are two problems with using Least(A) as the new can-
didates. One problem is that the least solutions may contain exis-
tential quantifiers that need to be eliminated before using them as
candidates so that the fixed point type inference phase only needs

to work with quantifier-free formulas.

10The code is somewhat contrived because of the CPS restriction. The
essence is F' being applied to the “return value” of another instance of itself.

sumlxy k=

if 2 <Othenk yelsesum2 (z — 1) (x4 y) k
checklr =

assert (100 < z); check2 z
maini () =

suml 100 O check1

Figure 9. Example 2.4 unwound twice from main.

The second, more critical, issue is that the least solutions are
often too strong as candidates. We illustrate the problem using the
summation program d from Example 2.4. Suppose we are given
the counterexample (main, 2). Unwinding d twice from main, we
obtain d’ shown in Figure 9. Then, using the least solutions, we

obtain the following top-level type environment A = Least(A).

A(sum2) =
z:{u:int | u = 99} — y:{u:int | u = 100} —
{u:int | L} = %) = *
A(suml) =
z:{u:int | w = 100} — y:{u:int | u = 0} —
({usint | L} = %) A ({usint | L} = %) = *
A(checkl) = ({u:int | L} = %) A ({uiint | L} — %)
A(check2) = {u:int | L} — *

Note that A says that sum2 (resp. suml) can only take 99 (resp.
100) as its first argument. Nevertheless, we have A F' &, and
so A is sufficient for typing d’. However, it is too strong to type
the original program. Indeed, if we had used the least solutions to
build candidates every time, then we would be generating a hundred
candidate types to type the original program.

More generally, the least solutions are too strong when the un-
winding is “incomplete,” which is often the case for programs con-
taining recursive functions. We would suffer from the dual problem
had we used the greatest solutions instead, that is, they would be too
weak. To overcome these issues, we use interpolation [11] to find a
quantifier-free solution Interp that can be weaker than Least (i.e.,
Least(P) = Interp(P)) but is still strong enough to type d’ (i.e.,
Interp = C).

5.3.2 Interpolants

We compute Interp via interpolation and the least solution Least
obtained by the process in Section 5.3.1. We briefly review the basic
properties of interpolation.

Interpolation Review Given formulas 6, and 61 where 61 = 02,
an interpolant between 01 and 02, written (01, 02), is a formula 0
such that 61 = 6, 0 = 02, and free(0) C free(01) N free(02). Itis
known that quantifier-free interpolants exist and can be computed
for many useful first-order theories, such as the quantifier-free
theory of linear arithmetic and uninterpreted function symbols [5,
20, 27].

Recall the total ordering of predicate variables < from Sec-
tion 5.3.1. We compute Interp(P) for each P in the descending
order of <. We describe how to compute Interp(P) having com-
puted Interp(Q) for all Q > P. Let

{Pp1 /\él:>é/17Pp2/\é2:>é/27...7ppn/\én:>éfn}

be the set of constraints in C of the form Pp A 6 = 6'. We set
Interp(P) = (Least(P), ) if Least(P) = 6 where

0= \SG = io



where S is the substitution such that S(Q) = Interp(Q)if P < Q
and S(Q) = Least(Q) if @ < P. (P is guaranteed to not appear
in 6; = 0..) Otherwise, Least(P) # 6 and we reject d’, and
therefore also the original program d, as untypable.

We explain the construction of the upperbound 6 above. First,
we concretize the upperbound of each Pp; (i.e., §; = 0.) by sub-
stituting formulas for the free predicate variables via S. Some free
predicate variables in 6; = 6; may not have its Interp computed
yet, and so S uses Least for such predicate variables. However,
because of acyclicity, such predicate variables are guaranteed to
appear only negatively (i.e., to the left of =-). Then, we reverse
substitute p; to obtain the concretized upperbounds for P, that is,
S(0; = 0})p; " for each i. The correctness of the construction re-
quires that the targets of p; do not occur free in S(0; = 0;), which
can again be ensured by renaming of bound variables. Finally, we
take the conjunction of the concretized upperbounds to obtain 6.

The following theorem states that the above algorithm finds a
correct Interp if and only if C is satisfiable.

THEOREM 5.8. The algorithm computes Interp such that Interp =
C if and only if C is satisfiable.

The proof is by induction on the (totally-ordered) predi-
cate variables. See Appendix C for details. Note that because
free(Least(P)) C scopevars(P), we have free(Interp(P)) C
scopevars (P) from the property of interpolants.

From the construction, we have Least(P) = Interp(P) for all
P. Although Theorem 5.8 does not imply that Interp # Least,
interpolating theorem provers tend to produce small interpolants
that often work better as candidates than do the least solutions.

Computing without Quantifiers 1t is possible to compute the
interpolant (Least(P), 6) by renaming the existentially quantified
variables in the least solutions with fresh variables. This approach
is justified by the following lemma and the fact that existential
quantifiers appear only positively in Least(P) and only negatively
in6.

LEMMA 5.9. A formula 0 is an interpolant between 3X.0; and
(3Y.02) = 03 if and only if it is an interpolant between 012 / X]
and 02y /Y] = 03 where @ and Y are fresh variables.

Thus, we can check for the satisfiability of C and obtain a quantifier-
free Interp without explicit quantifier elimination by using a the-
orem prover that can produce quantifier-free interpolants for the
formulas in the underlying theory.

5.4 New Candidate Types

Given Interp, we generate the new candidates sufficient for typ-

ing the counterexample. Recall that we have Interp(A) F' d'.
Interp(A) is a mapping from function names in d’ to their types.
Recall that Inames maps the original function names in d to their
inlined copies in d’.

We define the new candidatesﬂ@’ as follows: for each F'in d,
O'(F) = {m: | \; 7 = Interp(A)(G) where G € Inames(F)}.
Then, we pass ©’ to the fixed-point type inference component
which updates the candidates by © := © W ©’, where © & ©’
is the point-wise union AF.O(F) U ©'(F). From the property
free(Interp(P)) C scopevars(P), the new types are guaranteed
to be closed, and so the updated © is a valid candidate set. Fur-
thermore, because Interp(A) + d', it follows from Theorem 5.2
that the updated candidate set is sufficient to eliminate the spuri-
ous counterexample from future CEGAR iterations, as stated in the
following theorem.

THEOREM 5.10. Suppose that the lattice of candidates was refined
by refuting the counterexample (F,1). Then, for any counterexam-
ple (F, j) reported in future, j > 1.

Fixed-point JAENO.ARA

Type Inference

Typable(A)

Counterexample (F',3)

New Candidates ©"

Untypable(d’) Refinement

-3A.ARd

Figure 10. The type inference CEGAR loop.

It is worth noting that the theorem would hold true even if
Least had been used instead of Interp. Nonetheless, the idea is
that Interp is likely to eliminate other spurious counterexamples
that we would see in future had we used Least instead.

6. Putting Type Inference Components Together

Figure 10 summarizes our CEGAR-inspired type inference pro-
cess. The fixed-point type inference algorithm checks if the pro-
gram d is typable under the current set of candidates ©’, and if
so, returns Typable with the inferred typing A, and otherwise,
passes the counterexample (F, <) to the refinement algorithm. The
refinement algorithm creates the unwinding d’ from the counterex-
ample and decides d’’s typability completely. If d’ is found unty-
pable, then the refinement algorithm returns Untypable with the
real counterexample d’, and otherwise, returns new candidates ©’
that is sufficient for typing d’. The fixed-point routine refines the
candidates by updating © := © & ©’, and the CEGAR iteration
repeats.

As remarked before, while the fixed point type inference and re-
finement algorithms are each guaranteed to terminate, the CEGAR
loop may iterate forever, producing an ever more refined set of can-
didates. But, the type inference is sound and complete in the sense
that it always returns the correct answer when it terminates.

6.1 Initializing Candidates

The remaining question is about priming the CEGAR loop, that is,
how to pick the initial set of candidates. In principle, any © such
that each ©(F) is a finite non-empty set of well-formed types can
be used as the starting set of candidates.

One approach to building a sensible initial © is to run the re-
finement process with artificial counterexamples (F, ¢) for each F’
for some i, and take the point-wise union of ©' produced from each
counterexample as the initial ©. The implementation discussed in
Section 8 takes this approach with ¢ = 1.

Another possible approach is to heuristically create the initial
candidates by scanning the program text, for example, by using
expressions appearing in branch conditions as the formulas in the
refinement base types. This is also the approach taken in Rondon
et al. [34] for building the domain of possible types. Finally, we
may allow the programmer to suggest additional candidates (e.g.,
as type annotations).

6.2 Example

Recall the summation program d from Example 2.4. Suppose that
the current set of candidates is © shown below:
O(sum) = {int — int — (int — %) — *,
{u:int | w > 100} — {u:int | u > 0} —
({u:int | uw > 100} — %) — x}
O(main) = {() — *}
O(check) = {{u:int | u > 100} — x}



Then, InferNext*(AF. A O(F)) = A with A(main) = A, and
so the counterexample (main,?2) is reported. Hence, we unwind
from main twice, and obtain d’ shown earlier in Figure 9.

Next, linear intersection type shape inference infers A such that
AF1d’. From A we obtain the template A such that

A(suml) =
z:{u:int | P} — y:{u:int | P2} —
k:(z:{u:int | Ps} = %) A (z:{u:int | P4} — %) = %
A(sum2) =
z:{u:int | @1} — y:{u:int | Q2} —
k:(z:{u:int | Q3} = x) — *

where the predicate variables are fresh. (We omit the templates for
maini, checkl, and check2.) Generating constraints and solving
for the least solutions, we obtain

Least(Py) < u =100 Least(Q1) < u =99
Least(P2) ©u=0 Least(Q2) < u =100
Least(Ps) < Least(Py) < Least(Q3) < L

As remarked in Section 5.3.1, these solutions, while correct, are
stronger than desired. It is possible, though not guaranteed, for an
interpolating theorem prover to generate Interp such that

Interp(Q1) < Interp(Q2) < T
Interp(Qs) < u > y

From Interp(A), we obtain the new candidates ©’ such that

©’'(sum) = z:int — y:int —
{u:int |u >y} = %) = *

Then, as shown in Example 2.4, there exists A € A(© W ©’) such
that A F d, and the fixed-point type inference algorithm returns
Typable(A).

7. Beyond Assertion Checking

We have shown that our system can be used to check the absence
of assertion failures. This section presents an extension that checks
more general program properties specified via user-provided types.
Specifically, we allow the user to provide a mapping Y from func-
tion names to types and ask if there exists a typing A - d such that
0; T A(F) < Y(F) for all F. Such a specification conformance
check can be handled by a simple extension outlined below. Note
that this can also be used to force the system to infer a typing of a
desired precision.

We assume that T(F’) is well-formed for each F. We mod-
ify the fixed-point type inference algorithm from Section 4 so that
InferNext reports the counterexample (F, ) if it reaches A such
that 0; T I/ A(F) < YT(F) at the ith fixed-point iteration. Other-
wise, a fixed point A such that for all F', §; T = A(F) < Y (F) is
reached and the system declares that d conforms to Y.

We also extend the refinement algorithm from Section 5 so that
given the counterexample (G, 1), it unwinds d to get d’ as before,
and then checks if there exists A such that A + d’ and for all
F, for all F' € Inames(F), 0; T = A(F') < Y(F). If so, the
refinement algorithm returns new candidates ©’ constructed from
such A, and otherwise, declares that d does not conform to Y.
Note that the additional conditions @; T = A(F’) < Y (F) can be
reduced to constraints that can be solved by the constraint solving
algorithm.

8. Implementation and Experiments

We have implemented a prototype of the type inference system,
Depcegar, which takes a subset of Ocaml programs corresponding
to the simple functional language (cf. Figure 2) extended to direct-
style syntax. Depcegar handles non-CPS expressions by extending

Program | Time | T-TP | T-INT | Candidates
boolflip 02 | 95% 72% 10
sum 0.1 | 97% 26% 6
sum-acm 0.5 | 98% 14% 9
sum-all 0.1 | 93% 46% 9
mult 0.6 | 99% 31% 6
mult-cps 1.0 | 98% 31% 13
mult-all 0.5 | 98% 50% 10

Table 1. Experiment results - typable programs.

Program | Time | T-TP | T-INT | Candidates
boolflip-e 0.2 | 95% 79% 8
sum-e 2.8 | 99% 85% 9
sum-acm-e 99 | 99% 94% 10
sum-all-e 03| 97% 75% 9
mult-e 13.9 | 99% 91% 9
mult-cps-e | 42.1 | 99% 90% 16
mult-all-e 1.1 | 98% 71% 10

Table 2. Experiment results - untypable programs.

the type system with conditional types and union types, and handles
non-A-normal forms by online A-normalization [13].

Depcegar is implemented as a modification to the Ocaml 3.10.2
compiler. We use Ocaml’s parser and ML-type inference as the
front-end to parse the program and obtain the simple types.'! We
use CSIsat 1.2 [5] as the interpolating theorem prover. CSlIsat sup-
ports the quantifier-free first-order theory of uninterpreted func-
tion symbols and linear arithmetic (EUF+LA). CSIsat supports real
arithmetic but not integer arithmetic, and so integers are approx-
imated as reals in Depcegar (it does not affect the examples in
this paper). For convenience, we use CSlIsat both to generate in-
terpolants in the refinement phase and to decide base-type subtyp-
ing judgements in the fixed-point type inference phase (i.e., SubB
from Figure 7). The implementation contains about 5000 lines of
original code. A web demo of Depcegar and the benchmark pro-
grams are available online [36].

We have conducted experiments on small hand-crafted pro-
grams, including the ones used as examples in the paper. Table 1
summarizes the results. Here, the first column is the program name
and the second column is the running time in seconds. The col-
umn T-TP is the fraction of the running time spent by the inter-
polating theorem prover CSIsat (both interpolant computation and
subtyping judgements), and the column T-INT is the fraction of the
running time CSlsat spent computing interpolants. The times do
not include the parsing and ML-type inference time. The column
Candidates shows the total number of candidates generated (for all
functions combined). The experiments were conducted on a Intel
Core 2 Extreme 3GHz machine with 2GB of ram, running Linux.

All of the programs in Table 1 are typable. We briefly describe
each program. The program boolflip is the boolean program
from Example 4.3. The program sum-acm is the summation pro-
gram from Example 2.4, sum is the same summation program writ-
ten in direct-style (i.e., without using the accumulation parameter
y), and sum-all is sum recursively applied to all non-negative inte-
gers (i.e., it asserts ¢ < Zie{o ,,,,, o} i for all z > 0). The program
mult is the multiplication program from Figure 1, mult-cps is the
same program written in CPS, and mult-all is mult recursively

" Depcegar does not take advantage of ML’s parametric polymorphism, but
in principle, let polymorphism can be handled by inlining.



applied to all non-negative integers, that is, it replaces the last line
of mult with the following:'?

and f y = assert (y <= mult y y); £ (y+1)
and main () = £ 0

Depcegar was able to successfully infer a typing for each of the
programs. The Candidates column shows that relatively few candi-
dates are generated to type the programs, confirming our hypothesis
that the interpolation-based candidate generation method is quite
effective at generating good candidates.

To test Depcegar on untypable programs, we injected assertions
errors into each of the programs. For example, mult-e replaces the
last line of mult with the following to assert that 600 < 100 x 5:

and main () = assert (600 <= mult 100 5)

and boolflip-e applies F'to y y instead of y x inside the body of
F (cf. Example 4.3).

Depcegar successfully detected the type error in all of the pro-
grams. Table 2 summarizes the results. Note that the interpolation
fraction T-INT tends to be higher for the untypable programs. This
is primarily because their run ends during the last refinement phase,
whereas for typable programs, the run ends when the last fixed-
point type inference phase has finished. The results also show that
Depcegar quickly detects that boolflip-e (and sum-all-e and
mult-all-e) are untypable, but is quite slow on mult-e (and
sum-acm-e and mult-cps-e).

More generally, we have observed that while Depcegar can of-
ten quickly detect typable programs to be typable by generating
good candidates early in the CEGAR loop, for untypable programs,
it must iterate the CEGAR loop long enough until a real counterex-
ample is encountered. This may result in a large unwinding for a
type error that only occurs “deep” in the program. A similar is-
sue occurs in CEGAR-based model checking when detecting errors
that take many steps from the initial state to reach [2, 25]. One pos-
sible remedy is to multiply the unwinding depth by an increasing
factor as the CEGAR loop progresses. We leave for future work to
address the issue in a more depth.

We also observe that Depcegar’s running times are almost com-
pletely dominated by that of theorem proving, with a non-negligible
fraction dedicated to computing interpolants. As discussed in Sec-
tion 9.3, interpolating theorem provers are fairly new technology
and are actively being researched. Hence, we expect the running
times to improve as interpolating theorem provers mature. A possi-
ble optimization is to use a faster, non-interpolating theorem prover
for deciding subtyping judgements and use an interpolating theo-
rem prover only for computing interpolants.

Finally, we note that while the interpolation-based refinement
guarantees the elimination of the given spurious counterexample,
it does not guarantee the convergence of our system on all typable
programs.'® An interesting future research direction is to investi-
gate a more complete approach to candidate generation.

9. Related Work
9.1 Inferring Dependent Types

Inferring complex types via fixed-point type inference iteration is
a classic idea. For instance, Freeman and Pfenning [14] infers the
strongest refinement types given a user-provided lattice of refine-
ment types. The recent work by Rondon et al. [34] can be casted
as an instance of this approach to dependent types. Their system
chooses a finite set of candidate formulas by a syntactic scan of

12 Depcegar does not handle arithmetic overflows.

13 However, it is trivial to show that the system is guaranteed to converge on
programs with only finitary-data base types (e.g., just booleans).

the program text and the user-provided set of formulas, and infers
the strongest types within the lattice of dependent types confined to
these formulas via fixed-point iteration and theorem proving, sim-
ilar to the fixed-point type inference phase of our system. Lacking
automatic refinement, these approaches require the lattice of candi-
date types to be pre-defined and be of finite height. In contrast, our
system automatically infers candidate types within an infinite do-
main of types (i.e., unbounded intersections and arbitrary formulas)
via counterexample analysis.

One advantage of our approach is that the type inference be-
comes complete. That is, when the system declares the program
to be untypable, the user is assured that it is actually untypable
rather than wondering if more candidates were needed. A conse-
quence of this is that the inferred types may not be the strongest.
But, this is generally unavoidable as the strongest types may not
even be finitely expressible within the underlying theory, as in, for
example, the mult program from Figure 1. However, as remarked
in Section 7, the system can be made to infer types of the user-
specified strength.

Concurrent to our work, Unno and Kobayashi [37] have pro-
posed to infer dependent types via interpolation and iterative un-
rolling of recursive constraints. Chin et al. [6, 7] have also sug-
gested a constraint unrolling approach with the Omega test [33] as
the backend solver. These approaches use neither candidate types
nor a fixed-point type inference routine, but they resemble the re-
finement phase of our work in that they also reduce the infer-
ence problem to finding a solution to a set of first-order logic con-
straints. One issue with these purely constraint-based approaches is
the presence of “false constraint cycles” like the one shown in Ex-
ample 5.6."* In contrast, our approach divides type inference into
the fixed-point type inference phase and the constraint-solving re-
finement phase so that the latter is able to leverage unwinding and
linear intersection types to ensure constraint acyclicity.

We note that none of the previous systems listed above supports
unbounded intersection types. To the best of our knowledge, our
system is the first dependent (or refinement) type inference system
that can infer unbounded intersection types embedded with arbi-
trary formulas from a first-order theory.

9.2 Inferring Intersection Types

The success of our system owes much to intersection types. Not
only do intersection types make the underlying dependent type
system more expressive by being able to type more safe programs,
they are also crucial to the refinement phase of the system that uses
linear intersection type inference [21] to infer a derivation shape
that is sufficient for ensuring both type inference completeness and
constraint acyclicity.

Linear intersection type inference cannot be applied directly
to programs containing recursive definitions as linear intersection
types are not even defined for such programs. Our approach cir-
cumvents the issue by iteratively producing non-recursive program
fragments as counterexamples, and then checking if the candidate
types inferred for the fragments are also sufficient for typing the
original, recursive program.

In our system, intersection types are restricted to only intersect
types of the same simple-type shape, but intersection type inference
algorithms are capable of inferring arbitrary intersection of types,
as well as inferring principal typing [38], which we also do not
utilize in this work. We leave for future work to capitalize on the
full potential of intersection type inference.

14 por [6, 7], if extended to higher-order functions.



9.3 Model Checking

Counterexample-guided abstraction refinement has been used with
great success in hardware and software model checking (see, e.g.,
[3,9, 16]). However, most of the existing software model checkers
only target low-level imperative programs such as device drivers
written in C, and are unsuitable for functional programs because
they cannot accurately model higher-order functions and function
closures.

Recently, researchers have proposed model checking algorithms
for typed higher-order functional programs by leveraging their
equivalence to higher-order pushdown systems [24, 31]. However,
these algorithms only handle finite data domains, whereas our sys-
tem supports infinite data domains such as integers by utilizing an
interpolating theorem prover.

Interpolation has found various applications in model checking,
such as predicate abstraction [15, 18] and reachable state approx-
imation [26, 28]. We have shown that interpolation is also quite
effective for inferring dependent types. Algorithms for computing
interpolants for various theories are actively being researched (e.g.,
[5, 8, 17, 20]). As future work, we plan to extend our system to
other data types, such as lists and arrays, by using interpolating
theorem provers for their theories.

10. Conclusion

We have presented a new approach to inferring dependent types.
The key to the success is the iterative refinement of candidate de-
pendent types via counterexample analysis, utilizing linear inter-
section type inference and interpolation. We have shown that the
approach enables a sound and complete type inference of an ex-
pressive dependent type system that allows unbounded intersection
types embedding arbitrary formulas from a first order theory.
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A. Simple Type System

We formally present the simple type system. The syntax of simple
types is defined by the following grammar: (Also shown in Sec-



T'H F:T(F) TF c:simple(ty(c))

I' =% e : bool
' z:T(z) TF° asserte:int

e :s DaiskFies:x HFe:is—s TH y:s
' ey:s

I'F° letz=ej;ines : %

' 2z:bool I'H°e1:x T'Feg:x
I'F° if z thene; elsees : %

Figure 11. The simple type system type checking rules.

tion 2.1.)

B := int|bool
s u= x|Bls—s

Figure 11 shows the type checking rules. Here, we overload the
symbols I" and A to range over mappings to simple types.

DEFINITION A.1 (Simply-typed program). Let A be a top-level
simple type environment. We write A +° d if for each function
FZ =ced wehave A, T:6+° e : « where A(F) = T:§ — .

We say that a program d is simply-typed if there exists A such
that A +* d.

The simple type of a sub-expression e of d, sty(e), is defined
to be the type assigned to the (unique) occurrence of e in the
derivation A F° d.

The following theorem is the standard type safety result that
says that a simply-typed program does not get stuck, which can be
proven via the standard method [39]. (Recall that due to CPS, a
program does not return.)

THEOREM A.2 (Simple Type Safety). Let d be simply-typed and
main () = emain € d. Then, for any e such that emain — €, either
e —q fail or there exists €' such that e —4 €.

B. Sound Constant Types

For a constant operation ¢ over booleans and/or integers, we say

that the dependent type 7 = 2B - {u:B | ¢} is sound if the
following properties all hold:

e 7 is closed.
o simple(T) = sty(c).

e For any ¥ in the input domain of ¢, ¢[¥/Z][[c](T)/u] is
logically valid.

Sound types for boolean and integer constants are defined analo-
gously. For example, a sound type for the constant ¢ of the base
type Bis {u:B | u = c}.

While a constant operator in our language accepts all inputs in
its domain, behaviors such as the divide-by-0 error can be modeled
by inserting appropriate assert statements.

C. Proofs of Key Results

We prove Theorem 5.4, Theorem 5.5, and Theorem 5.8. To facil-
itate the proofs of Theorem 5.4 and Theorem 5.5, we define a 3
reduction like semantics for unwound program fragments.

C[(st £in Ap.e) q] —p
Clst £:: (b= q) ine[b/p]]

Ci[let a=ein Ca[(st £ in Ap.e’) a]] —p
Ci[leta=ein Calst £ :: (b=¢) ine'[b/p]]]

Ci[st 41 :a=e:: ls in Co[(st £ in Ap.e’) a]] =3
Cilstlh:ia=eulyinColst £:: (b=e) ine'[b/p]]]

Ci[let a=ein Cilaz]] —p Ci[let a=e in Cale ]|

Ci[st €y ::a=e:: by in Chlaz]|
—p Ch[st b1 ::a=e:: ly in Carle ]

Figure 12. The — 3 reduction rules.

First, we update the syntax of the language so that \ abstractions
are used to denote functions and function closures:

e == z|c|F|Ape|ex|leta=esines

| if z thene; elsees | asserte|stfines
x = pla
{0 == a=

(For convenience, we overload the meta variable e to range over
the expressions in the updated syntax.) We separate variables to
two kinds: stack variables, ranged over by symbols a, b, etc., and
parameter variables, ranged over by symbols p, g, etc. Symbols x,
vy, etc. range over both kinds. Stack variables are bound at 1let and
the new construct st. Conceptually, the expression st a=¢ine
represents a function-call stack frame with the stack m, and the
program counter e. We use stacks instead of explicit substitution so
that we can type intermediate states via the App and If rules as
they require a variable for the argument and the branch condition.
Stack frames are also used to mark function bodies to avoid base-
type variables in the parent context from affecting their typing.

We translate an unwound fragment d’ to its representation in
the updated syntax lam(d’) by replacing all non-leaf functions
with the equivalent A representation enclosed in an empty stack
frame, and replacing all let-bound variables with a fresh stack
variable. More formally, for F' 2 = e € d’, we define lam(F) =
st € in A .lam(e[P /7)) where P are fresh, and lam(e) is
defined inductively as e with all its non-leaf free function name
G replaced by lam(G) and all let bindings let x =e; in es
replaced by let a=e; in ez[a/z] for a fresh stack variable a.
(Here, € denotes the empty sequence, and AT .e is a short hand for
AT1.AZ2. ... Axp.e Where & = x1,2x2,...,2,.) Then, we define
lam(d') = lam(F) where F is the root function of d’. Note that
only the leaf functions of d’ may appear free in lam/(d’).

We define normal forms, ranged over by nf, by the grammar
below:

nf = x|p@|cT|FZ|\p.nf]|stnlinnf
| leta=nf, innf, | assert nf
if x th 1
|  if z then nf, else nf,
nl = a=nf

Let C range over any expression context. Figure 12 defines
the “B reduction” semantics for expressions in the updated syntax.
Intuitively, these rules implement the usual 3 reduction, but using
stacks instead of explicit substitutions. In the first three rules, the
stack variable b appearing to the right of — 4 is fresh (i.e., it does
not appear free to the left). The first three rules, differing only on
whether the variable a (or g) is a parameter variable, let-bound or
st-bound, applies the function st ¢ in Ap.e to the argument a (or



I,pio;0ke:T
0 Ape:pio—1

am

Foreach i.I';0 Fx e; : 0;

a1:01,...,Gn:0n; T e 1%
— St
I'0Fstar =e1,...,an =€, ine’ : %
Ip:o\X;0F e:7
X ={p|p ¢ free(e) and sty(p) not base}
am?

;0 Mpe:po—r

For each ¢.I"; 0 I—lA e; : 0;
a1:01,. .. a0, \X; T H €& 1 %
X ={a; | a; ¢ free(e) and sty(a;) not base}

I0H stai=ey,...

. /
,an =epine :x

Figure 13. Dependent type checking rules for the extended expres-
sions.

q). The last two rules, differing only on whether the variable a is
let-bound or st-bound, substitutes a with e.

Note that the semantics do not reduce conditionals, asserts,
constant applications, nor leaf function applications, but reduces
user-defined function applications everywhere. It is easy to see that
a normal form cannot be reduced, i.e.,

LEMMA C.1. For any normal form nf, there exists no e such that
nf —g e.
We update the simple type system *° in a straightforward way
to the extended syntax by adding the rules below.
I,p:sHe:s
' Ape:s—s
Foreach:.T'F° ¢; : s;

a1:81,...,0n:8, F° € 1%

St

I'Fstai=e€1,...,an =€, ine : %

The next lemma states the expected, that is, simple typability of
d' and lam(d’) coincides.

LEMMA C.2. Let d' be an unwound program fragment. Then,
IA.AF° d ifand only if IA.A F° lam(d")

Proof: By induction on the structure of d’. O

It can be shown that F° typing is preserved across — s using the
standard method [39].

LEMMA C3. IfTF° e:xand e —p e/, then T ° €’ : x.

Also, by the standard strong normalization result for the simply
typed A calculus, we have that —4 is strongly normalizing for
simply typable terms. (See, e.g., [29].)

LEMMA C.4. Suppose T' +° e : *. Then, e strongly normalizes to
some normal form.

Henceforth, we assume that any expression is simply typed, and
that its simple type, sty(e), is available.

We also update the dependent type system F and F! to the
extended expressions so that the typability of d’ and lam(d’) also
coincides there. Formally, we add the rules shown in Figure 13.
Note that the typing rules for a stack frame (St and St') ignores
the parent’s environment assumption.

We restate the expected property as a lemma.

LEMMA C.5. Let d' be an unwound program fragment. Then,
IAAF d ifand only if IAA; T F lam/(d), and IAA ' d' if
and only if IA.A; T + lam(d').

Proof: By induction on the structure of d’. O

It is easy to show the preservation result for the dependent type
system I, again via the standard method [39].

LEMMA C.6. IfTFe:xande —g €', thenT €' : *.

Now, let us cast the extended ' type rules as constraint gen-
eration rules by modifying the SubB rule just as we have done
for the original set of rules in Section 5.3. We show that the gen-
erate set of constraints coincides for d’ and lam(d'). For conve-
nience, we assume that the derivation is modified so that the con-
straint generated by each subderivation is written explicitly as in
I;¢ F! e : 7;C where C is the set of constraints generated by the
derivation T'; ¢ ' e : 7. To generate constraints from lam(d’), it
suffices to just make fresh predicate variables appear everywhere in
the argument type o at Lam?.

The following theorem states that constraints generated from d’
is equivalent to those generated from lam(d’).

LEMMA C.7. Let C be the set of constraints generated from A +*
d'. Then, we have A\ {F | F is not leaf}; T F' lam(d’) : %; C.

Proof: By induction on the structure of d’. O

C.1 Theorem 5.4

THEOREM 5.4. Let d’' be an unwound program fragment. Then,
the following are equivalent.

(1) There exists A such that A F* d'.
(2) There exists A such that A = d'.

By Lemma C.5, it suffices to show that the typability of lam(d')
coincides for H! and F. (1) = (2) is trivial because any - typing
derivation is a valid I derivation that just does not use function type
bindings non-linearly.

We prove (2) = (1) by showing that any strongly-normalizing
I typable terms are F' typable. Then, because any lam(d’) is
strongly normalizing by Lemma C.4 anyway, it follows that any
I typable term is - typable.

For a free non-base type stack variable a in nf, we write
I(a,nf) for the set of types o such that simple(oc) = sty(a)
and the top level linear intersections of ¢ matches the occurrences
of a in nf. For example,

I(a,\p.paa) = {1 AT | simple(T) = simple(r’) = sty(a)}

For a type environment I', let I(I",nf) be the set of type en-
vironments I that maps all base-type variables and (non-base-
type) stack variables in dom(I") (i.e., it does not map non-base-
type parameter variables and function names) such that I'(a) €
I(a,nf) for a € dom(I') a non-base-type stack variable and
I(z) = (T(z)]) for x € dom(T") a base type variable, where
(A {u:B | 6:}) = {u:B| A\, 0:}. Essentially, I'" € I(T', nf) is
a type environment that is equivalent to I" for base-type variables
and has arbitrary well-shaped types for non-base-type stack vari-
ables.

We now show that any + typable normal form is F! typable
under such an environment.

LEMMA C.8. Suppose T; T o nf : o. Let TV € I(T,nf).
Then, there exists I O T and o' such that T"'; T X nf : o,
simple(c’) = simple(o), and if o is a base type, o' = (o).

Proof: By induction on the structure of nf. The case nf is a variable
is trivial. For the case nf is p z (resp. F' ), we set T (p) (resp.



I'"'(F)) appropriately so that it is a function taking the arguments of
the type F’(g) (if an argument is also a function-type parameter
variable or a function name, then it too can be set to be of any
appropriate type).

The case nf is ¢ @ follows from the sound constant type as-
sumption (cf. Section B) that all arguments to a constant operator
are of base types. The case nf is a lambda abstraction follows triv-
ially from the induction hypothesis.

For the case nf is a let expression let a = nf, in nf,, we split
on whether sty(a) is a function type or not, and apply induction
hypothesis. The case nf is a stack frame st nfinnf’ is similar. The
case nf is an assert expression or a conditional expression follows
from induction hypothesis and the fact that asserted expressions
and branch conditions are always of base types. O

Next, we show the “subject-expansion” property.

LEMMA C.9. Suppose e1 —g e2, I'o;p €1 : %, and T'; ¢ Floe,
*. Then, there exists T such that T"; ¢ F1 ey : .

Proof: We prove by case analysis on the reduction kinds. For the
case the reduction is one of the first three rules in Figure 12, we
type e1 by setting the type of the parameter variable p to be the
type of b in the typing for e».

The case the reduction is one of the last two rules in Figure 12
follows trivially from the inspection of the rules St* and Let'. O

By Lemmas C.4,C.6,C.8, and C.9, it follows thatif A; T ke : x
then there exists A’ such that A’; T F' e : %. This proves (2) =
(D).

C.2 Theorem 5.5

THEOREM 5.5. The generated set of constraints C does not con-
tain constraints of the form {Pip; N0; = Piy1p; |1 <i<n}
for some n > 1 with Py = Pp41.

By Lemma C.7, it suffices to show that lam(d’) generates
acyclic constraints. Because we are only concerned with constraint-
generation in this section, we assume that - judgements and
derivations are that of constraint generation and not type check-
ing. Recall that constraint generation judgements have the form
I';¢ F' e : 7;C where C is the set of constraints generated by
the derivation (cf. §ectiop C). Also, for readability, we elide the
decorated notation 6, 7, A, etc., which was used in the main body
of the paper to emphasize the fact that the object may contain pred-
icate variables, and simply use the non-decorated version 6, 7, A,
etc.

We prove the theorem semantically, like (2) = (1) of The-
orem 5.4. This time, we show that any strongly normalizing
(w.r.t. —g) expression generates acyclic constraints. Then, the re-
sult follows from Lemma C.4 which says that any unwound pro-
gram fragment is actually strongly normalizing.

In a spirit similar to the construction of I(I', nf) from Sec-
tion C.1, for a normal form nf, let I(nf) be the set of type environ-
ments I mapping base-type variables (both parameter and stack)
and non-base-type stack variables free in nf to arbitrary types of
the correct linear shape. For example,

I(Ap.paa)
= {{a— 7 AT} | simple(r) = simple(r’) = sty(a)}
We now show that the set of constraints generated from a normal
form expression under such an environment is acyclic.

LEMMA C.10. Let I' € I(nf) and C be any acyclic set of con-
straints. Then, there exists I’ O T and 7' such that T'; ¢ F' nf :
7'5C" and C U C' is acyclic.

Proof: By induction on the structure of nf. The case nf is a variable
is trivial. The cases nf is an application p 7 (resp. I Z) holds by

letting the type of p (resp. F') in I'” to be of a type containing fresh
predicate variables everywhere (i.e., distinct, and not in I" or C).
Note that p ¢ dom(T") because p is a function-type variable. The
constant application case ¢ 7 is trivial.

The case nf is a lambda abstraction follows trivially from in-
duction hypothesis. The case nf is a stack frame or a let expression
is also straightforward from induction hypothesis, instantiating C to
be the constraints from the other subterms. The case nf is an assert
expression or a conditional expression is similar. O

Note that the lemma implies that constraints C generated from
a program-level environment (i.e., A; T F! nf : %;C for A with
fresh predicate variables everywhere.) is acyclic.

Given constraints C we say that there is an edge from P to
if there exists a constraint of the form Pp A § = Qp’ € C. We
say that there is a path from P to @ if there exists a non-empty
sequence of edges connecting P to (). Note that C is acyclic if and
only if there exists no path connecting a predicate variable to itself.

We now show the “subject-expansion” property.

LEMMA C.11. Suppose ey —g ez, and I'; ¢ Floey *; C with C
acyclic. Then, there exists T such that T'; ¢ F' ey : x;C’ with C’
acyclic.

Proof: We prove by case analysis on the reduction kinds. For the
first three rules in Figure 12, we use fresh predicate variables for
the type of the argument p.

Then, it can be shown that C’ comprises of the predicate vari-
ables in C and the fresh predicate variables from the type of p. The
new constraints from the function application in e; do not induce
new paths in C’ between variables that are in C, and that there are
no edges directly connecting the new predicate variables appearing
in the type of p. Thus, C’ is acyclic.

The case the reduction is one of the last two rules follows
trivially from the inspection of the rules St* and Let®. O

Lemma C.10 and Lemma C.11 imply that constraints gener-
ated from any strongly normalizing e is acyclic. Therefore, by
Lemma C.7 and Lemma C.4, we have proven Theorem 5.5.

C.3 Theorem 5.8

THEOREM 5.8. The algorithm computes Interp such that Interp =
C if and only if C is satisfiable.

The only if direction is trivial. We prove the if direction. We
enumerate the predicate variables as P, . .., P, where P; < P41
for 1 <4 < n. (Recall that predicate variables are totally ordered.)

Let S be a mapping from predicate variables to formulas. For
7,k < n, we define Sf to be the following mapping:

& Least(P;) ifi<j
(P = . .
S5(P3) {S(PZ-) ik <

(Sf(PL-) is undefined for j < ¢ < k.) Recall that a predicate
variable can occur at most once in any constraint =6 ecC.
For each P;, let ®; C C be the set of constraints of the form
P; pNA =20

Let us write Ok;(S) if for all j > 4, we have Least(P;) =
S(P;)and S(P;) = (S1(6) = S(0"))p " forall PipAb = 0’ €
®;. Note that S such that Ok, (.S) is exactly Interp.

The following lemma shows that if C is satisfiable, then the
algorithm is able to compute some Interp.

LEMMA C.12. Suppose Least |= C. Then, there exists S such that
Ok1(S).

Proof: We prove Ok;(.S) for all ¢ by induction in descending order.



Base case

We show that there exists .S such that Ok, (S). Pick Prp A 6=
Q’ € &,,. By the property of the ordering <, it must be the case that
6" is concrete. Then, because Least |= C, we have Least(P,)p =

(Least(d) = 6')p~'. So, there exists an interpolant S(P,) =

(Least(P,), (Least(f) = 6')p~') and we have Ok, (S).

Inductive case

Let S be such that Ok;(S) for all j > i (by definition the same S
can be used for all such j). We show that there exists S’ such that
Ok;(S").

Pick P;p /\9 =0 c ®,;. Let k > 1 be the smallest & such that
Py appears in 6. The following is a tautology.

Least(P)p = (SE(B) A (SEi1 (Pip A ) = S(@)) = S(0))

Let Pypr A Qk: 6. By i{lduction hypothesis, we have S(Py)pr =
(SE L (P;p A 6y) = S(6")). Therefore, we have

Least(P:)p = (SF(6) = S(§))
Let S'(P;) = (Least(P;),(SF(6) = S(0")p~') and S’ (P;) =
S(P;) for all j > 4. Then, Ok;(S").
Now suppose no such k > i exists. Because Least = C,

we have Least(P;)p = (Least(8) = Least(0')). By induction

hypothesis, we have Least(6') = S(6"). Therefore,
Least(P;)p = (Least(6) = S(0'))

And we can set S'(P;) = (Least(P;), (Least(6) = S(6"))p™")
and S'(P;) = S(P;) forall j > i, and get Ok;(S’). O

To complete the proof of the theorem, we show that Interp
obtained this way (i.e., Ok1(Interp)) is actually a solution for C.

LEMMA C.13. Suppose Ok1(S). Then, foralli, S = ;.

Proof: We prove by induction on 7 in ascending order.

Base case

For ¢ = 1, the result follows trivially from the definition of

Ok1(S).

Pick Pip A0 = 6’ € &;. It suffices to show that S(P;) = S(6 =
0)p".

Let £k < ¢ be the largest k such that Py appears in §. Let
Prpi A Gr = 6. The following is a tautology.

S(P)p = ((S(O) A (S(Pip Abr) = S(')) = S(0"))
By induction hypothesis, we also have S(Px)pr = (S(Pip A

Gx) = S(0")). Therefore, S(P;) = S(6 = 6")p~".
Now, suppose no such k < ¢ exists. Then, we have S(P;) =

S(6 = 0")p~* by the definition of Ok1(S).
O

Finally, Theorem 5.8 follows from Lemma C.12 and Lemma C.13.



