
Decomposition Instead of Self-Composition

for Proving the Absence of Timing Channels

Timos Antonopoulos, Paul Gazzillo, Michael Hicks,† Eric Koskinen, Tachio Terauchi‡, Shiyi Wei†

Yale University, USA † University of Maryland, USA ‡ JAIST, Japan

Abstract

We present a novel approach to proving the absence of tim-
ing channels. The idea is to partition the program’s execu-
tion traces in such a way that each partition component is
checked for timing attack resilience by a time complexity
analysis and that per-component resilience implies the re-
silience of the whole program. We construct a partition by
splitting the program traces at secret-independent branches.
This ensures that any pair of traces with the same public in-
put has a component containing both traces. Crucially, the
per-component checks can be normal safety properties ex-
pressed in terms of a single execution. Our approach is thus
in contrast to prior approaches, such as self-composition, that
aim to reason about multiple (k ≥ 2) executions at once.

We formalize the above as an approach called quotient

partitioning, generalized to any k-safety property, and prove
it to be sound. A key feature of our approach is a demand-
driven partitioning strategy that uses a regex-like notion
called trails to identify sets of execution traces, particu-
larly those influenced by tainted (or secret) data. We have
applied our technique in a prototype implementation tool
called Blazer, based on WALA, PPL, and the brics automa-
ton library. We have proved timing-channel freedom of (or
synthesized an attack specification for) 24 programs written
in Java bytecode, including 6 classic examples from the lit-
erature and 6 examples extracted from the DARPA STAC
challenge problems.
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ification; •Theory of computation → Program reason-
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ing → Formal methods
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1. Introduction

A program has a timing channel if variations in its running
time can reveal information about secret inputs. For exam-
ple, a password check whose running time depends on how
much of the guess matches the real (secret) password poten-
tially has a timing channel. That a program is free of timing
channels is a k-safety property. Such a property involves k
(terminating) runs of a program and, consequently, valida-
tion requires establishing relationships between k different
execution traces. For timing channels, we need k = 2 runs:
any pair of executions whose computations use the same
public inputs (but may differ on their secret inputs) should
nevertheless have similar running times.

We are interested in verifying that programs are free of
timing channels. It seems appealing to leverage the success
of abstract interpretation. Abstract interpretation-based tools
enjoy rigorous guarantees and provide formal proofs of var-
ious safety and liveness properties. They also are efficient.
Implementations such as ASTRÉE and INTERPROC are able
to validate properties of large C programs.

Abstract interpretation-based techniques focus on single
executions, but to prove k-safety properties we need to re-
late multiple executions. A clever way to do this is to em-
ploy self-composition [7, 8]: To reason about k runs of a
program, we can concatenate k copies of it (with variables
suitably renamed) and then assert a property that relates vari-
ables in different copies. For our timing channel property,
we could concatenate the program with itself, require that
public inputs to both copies be the same, and then assert
that execution counters inserted for each copy are (approxi-
mately) equal at the conclusion, despite allowed variation of
secret inputs. Self-composition can be expensive due to the
explosion of the cross-product state space. As such, several
works have looked to improve the basic idea by exploiting
structural similarities in the program (e.g., using interleav-

ing composition [27, 36, 37]). Other works applied similar
ideas to improve relational verifiers directly [5, 11, 31, 34].
As discussed Section 7, these approaches (and others) nev-
ertheless rely, at least implicitly, on making k copies of the
program, which means that invariants are split across the
product program. The result can be either poor performance



or key information being lost due to abstraction during fix-
point computation.

With a focus on verifying the absence of timing channels,
we depart from the composition-based strategies and instead
establish a novel decomposition methodology. Our key in-
sight, sketched in Section 2, is that rather than prove a re-
lational property about all pairs of execution traces, we can
prove a non-relational property about each trace in a certain
trace partition, computed iteratively.

Formally, let C be a program of interest, and JCK be all
of its possible execution traces. Our method aims to produce
a partition T = T1, ..., Tn (for some n ≥ 1) of JCK which
has the following properties:

1. For every pair of traces {π1, π2} ⊆ JCK, if in(π1)[low] =
in(π2)[low] then there exists some Ti such that {π1, π2} ∈
Ti.1 That is, if two execution traces have the same low—
meaning non-secret—inputs, then they must both be part
of some partition element.

2. For each Ti and π ∈ Ti there exists a function f such
that time(π) = f(in(π)[low]) ± c; i.e., the running time
of each trace is a function of the low input, plus or minus
some constant c (which defines the observational limits
of the attacker). Importantly, the running time should not

be a function of the secret inputs.

With such a partition we establish the timing channel free-

dom property Φtcf we desire, which is ∀π1, π2 ∈ JCK,

in(π1)[low] = in(π2)[low] ⇒ time(π1) ≈ time(π2)

Each trace in the same partition component Ti has the same
running time function f over low variables (only), and traces
in different partitions have unequal low inputs and thus sat-
isfy Φtcf vacuously.

In Section 3, we make this point rigorous by formally de-
veloping a decomposition strategy we call k-quotient parti-

tioning for proving k-safety properties Φ, showing that our
proof of Φtcf is an instance of it. k-quotient partitioning has
two components: (1) a k-ary quotient formula ψ such that
each set of k traces that satisfies ψ appears in the same par-
tition element; and (2) a family of k-ary partition properties

Pi such that any set of k traces in a partition element Ti sat-
isfy Pi, and all Pi together jointly imply the global property
Φ. For timing channels, we have k = 2, the quotient formula
is that traces’ low inputs are equal, and the partition property
is that the running time of each partition element’s trace is
a function f of its low inputs. Section 3 briefly describes
other k-safety properties whose proof may be amenable to
k-quotient partitioning.

A key challenge of k-quotient partitioning is arriving at
the partition T. Our approach to proving the absence of tim-
ing channels synthesizes T iteratively, along with the corre-
sponding per-component running times Pi. We do this us-

1 Technically, the T1, ..., Tn need not be disjoint, i.e., the same trace π may
appear in several Ti. But for gaining intuition this detail is unimportant.

ing an abstraction called trails. A trail t is an annotated reg-
ular expression (regex) over the edges of the control-flow
graph, and specifies a subset of the program’s execution
traces (i.e., those that follow the trail). We partition exe-
cution traces using trails annotated by the influence of se-
cret or public inputs (“taint”). In particular, branching ex-
pressions in a trail (union or Kleene star constructors) are
annotated as to whether the branch depends on inputs that
are tainted. Starting with the most general trail, which cap-
tures all executions, we attempt to prove a tight lower and
upper bound on the running time of traces described by the
trail [16–18] by matching transition relations with a database
of lemmas [17]. If we cannot, we break the trail into smaller
trails at tainted branching expressions; e.g., putting all exe-
cutions that take the true branch into one trail and all that
take the false branch into another. Since we split at branches
that are taint-influenced, we ensure that execution pairs in-
volving equal public inputs will be put in the same partition
component. The trail abstraction and our partitioning algo-
rithm is described in detail in Section 4.

Section 5 describes the implementation of our approach
in a tool called Blazer. We equip a standard abstract in-
terpreter with the ability to consult an oracle (the synthe-
sized trails) to decide which CFG arcs to follow, thus de-
riving partition-specific invariants. These invariants underlie
the per-trail running time analysis. If Blazer cannot prove
that a partition Ti has tight bounds on running times, and
further taint-based sub-partitions are not possible, it attempts
to synthesize possible attacks. In particular, it generates sub-
partitions and running times based on secret information; if
a difference in secret values results in observable differences
in running time, then there is a possible attack.

Section 6 presents an evaluation of Blazer on a collection
of 25 benchmarks, including 12 tricky hand-crafted bench-
marks, 7 programs from the literature [15, 22, 29], and 6
fragments of the DARPA STAC challenge problems [35].
We find that Blazer is able to prove the absence of timing
channels when the program is safe or else synthesize an at-
tack specification in all but two cases.

In summary, this paper contributes:

1. A novel program analysis technique for proving the ab-
sence of timing channels that decomposes the problem
into one of proving simpler properties of subproblems
rather than proving the relational (2-safety) property di-
rectly, e.g., by self-composition (Sec. 2).

2. A proof of soundness of a general decomposition ap-
proach for proving k-safety properties called k-quotient
partitioning, of which our timing channel approach is one
instance (Sec. 3).

3. A novel symbolic representation of partitions, trails, and
an algorithm for constructing new partitions (Sec. 4).



4. An implementation of our approach in the tool Blazer

discovering timing channels in Java programs, or proving
their absence (Sec. 5).2

5. An evaluation on 25 benchmark programs, including ex-
amples from the STAC challenge problems and the cryp-
tography literature [15, 22, 29] (Sec. 6).

2. Overview

In this section, we give a tour of our work. We begin with
simple examples to introduce the key idea of using a parti-
tion of executions to prove timing channel freedom. We then
describe our algorithm in more detail, explaining how par-
titioning is interleaved with running time computation. Fi-
nally, we explain how the same basic approach can be used
to synthesize a possible attack when timing channel freedom
cannot be proved.

2.1 Decomposition: The Basics

Consider the following example program.

Example 1.

1 void foo(int high, uint low) {

2 if (high == 0) {

3 i = 0;

4 while(i < low) i++;

5 }

6 else {

7 i = low;

8 while(i > 0) i−−;

9 }

10 }

This program takes a secret input high, and an attacker-
controlled (tainted) input, low. A program is said to have a
timing channel if the attacker, assumed to know the program
code, can infer information about the high by observing
the program’s running time (perhaps iteratively varying the
input low). The execution of this particular program branches
on secret variable high so we may wonder whether there
is a timing channel. Proving there is not one requires, in
principle, that we relate all pairs of execution traces. Doing
so directly (e.g. by constructing a self-composition [7, 36] or
a relational program analysis [5, 9, 11, 34, 40]) can magnify
the overall state space to consider.

We show that we can instead prove that all executions
(later: execution partitions) share the same property. For
timing channels, we want to prove that each execution of the
above program has a running time that is a function of (only)
low. In this case we can be more specific: the running time
is linear in low (for some fixed linear function). We might
write this as a property P lin

low, and then write:

∀π ∈ JCK. P lin
low(π)

2 While Blazer does not yet support recursive functions, our theoretical
results still apply; we plan to explore an annotation-based strategy.

where JCK is the set of all execution traces of the program
C. An obvious consequence of this is that every pair of
executions π1, π2 share P lin

low. As such, it is clear that there
can be no timing channel.

The key idea of our approach is to break down the ex-
ecutions of the program into various cases, depending on
high-independent branching, and in each case discover a run-
ning time property P that describes all traces in that case. To
do this, we symbolically (and automatically) discover a par-
titioning of the execution traces T = T1, ..., Tn such that
JCK =

⋃

i∈[1,n] Ti so that we can find some Pi to charac-
terize the running time for all π ∈ Ti. As long as each Pi

is independently acceptable (i.e., running time does not de-
pend (much) on high), then the overall program satisfies the
desired property. In Example 1, we only needed one partition
component. Here is another example.

Example 2.

1 void bar(int high, int low) {

2 int i;

3 if (low > 0) { // O(2*low)

4 i = 0;

5 while(i<low) i++;

6 while(i>0) i−−;

7 } else { // O(1)

8 if (high == 0) { i = 5; } else { i = 0; i++; }

9 }

10 }

In this program, not all executions have the same sym-
bolic running time. If low is positive, the execution will be
linear in low, otherwise it will be either one instruction or
two, depending on the value of high. To discover this, we
can form a partition of the execution traces as follows:

T> , {π | in(π)[low] > 0} and T≤ , {π | in(π)[low] ≤ 0}

where JCK ⊆ T> ∪ T≤ and in(π)[low] means the value of
the low input variable of trace π. For now, let us assume
this partition is given to us (we describe how we get the
partition shortly). With some help (discussed below), we can
coerce an off-the-shelf abstract interpreter to now perform
two analyses proving, respectively, that:

∀π ∈ T>. P
lin
low(π) and ∀π ∈ T≤. P

const
c (π).

Here, property P const
c (π) means that the running time of

the trace is within some (fixed) small attacker-unobservable
bound (say, ε) of the constant c. For this example, c = 1 with
ε = 1.

These two proofs establish relationships between any two
copartitional traces (two traces in T> or two traces in T≤).
But what about some π0 ∈ T> and some π1 ∈ T≤? These
two traces have different symbolic running times. However,
notice that the path condition (whether low is above 0) de-
pends only on variable low and not on secret variable high.
Consequently, we can immediately conclude that, although



1 loginSafe(String username, byte[] guess) {

2 boolean dummy, matches = true;

3 byte[] user_pw = retrievePassword(username);

4 if(user_pw == null)

5 return false;

6 for(int i = 0; i < guess.length; i++) {

7 if (i < user_pw.length) {

8 if(guess[i] != user_pw[i]) matches = false;

9 else dummy = true;

10 } else {

11 dummy = true; matches = false;

12 }

13 }

14 return matches; }

trmg — Most general trail

All paths are possible

[8, 23*g.len+10]

tr2 — Must enter for loop

[19*g.len+10, 

23*g.len+10]

tr1 — May exit on line 5

[8, 8]

taint taint

1 loginBad(String username, byte[] guess) {

2 byte[] user_pw = retrievePassword(username);

3 if(user_pw == null)

4 return false;

5 for(int i = 0; i < guess.length; i++) {

6 if (i < user_pw.length) {

7 if(guess[i] != user_pw[i])

8 return false;

9 } else {

10 return false;

11 }

12 }

13 return true; }

trmg — Most general trail

All paths are possible

tr1— Exits on Line 4

taint

[6,6]

tr2— Must enter for loop

taint

[28 , 20*max(g.len,p.len)+8]

tr3— Within for loop,

can take early exits

sec

[6 , 20*max(g.len-1,p.len)+8]

tr4 — Within for loop, 

cannot take early exit

sec

[6 , 20*g.len+8]

[6 , 20*g.len+8]

Figure 1. Two versions of a program that validates a password (left column) and the corresponding output of our tool
Blazer (right column). Each rectangle represents a trail, and each downarrow from a trail represents a subtrail; the taint and
sec annotations indicate on what sort of data the subtrail was created. The balloons contain ranges [x, y] that indicate the
lower/upper bound on the trail’s running time in terms of number of instructions (g.len is short for guess.length and p.len is
short for user_pw.length). Bolded (green) nodes indicate areas where the program is safe and double-line (red) nodes indicate
an attack specification.

traces from two different partition components have differ-
ent running times, these differences cannot be correlated
with high’s value.

2.2 Synthesizing Partitions with Trails

Our trace partition in Example 2 considered different in-
put values: those for which low > 0, or not. This distinc-
tion corresponds to whether we branch at line 3, or not. Our
algorithm likewise develops a partition by considering sets
of paths, particularly those that take a branch one way vs.
the other. Paths are specified using annotated regular expres-
sions tr that we call trails, which for the purposes of this
example have the following grammar:

tr ::= ij || i↓ || tr1 · tr2 || tr1 |α tr2 || tr∗α

Trails are defined over edges ij in a control-flow graph,
where i and j represent CFG blocks in the program. We
also permit edge i ↓, meaning a block i that subsequently

moves to the exit block. We use · for sequential composition
(often dropped when clear from context), vertical bar for
branching, and star for looping. Both branching and looping
regex operators are annotated with α ∈ {l,h,(l,h)}. Symbol
l is used to mean low, h to mean high, or l,h to mean both.
Here is an example:3

23 · (34 · 45 · 5∗l · · · ) |l (38 · · · )

This represents executions of Example 2. These executions
start on line 2 and proceed to line 3, characterized by edge
23. Then they follow the branch at line 3, which depends on
low input, as indicated by the annotation l. According to the
lhs of the branch, this trail considers executions that go from
line 3 to 4 and then 4 to 5 and then 0 or more times through
line 5, due to the low-dependent loop, etc. According to the

3 For this example we refer to line numbers, rather than CFG blocks (as
used by our actual algorithm), for clarity.



rhs of the branch |l, the trail also considers executions that
go from 3 to 8 (etc.).

The trail-based partition is generated iteratively. We start
with a trail that characterizes all possible executions of the
program; we call this the most general trail, trmg. We at-
tempt to compute the running time of all paths characterized
by this trail. If the running time is primarily a function of low

input, with constant-bounded effect from high, then we are
done. If this is not possible, we further break down the trail at
low-dependent (only) branching points. For Example 2, this
results in a trail describing all paths for all true paths through
line 3, and another for all false paths.

Ultimately, the final partition is a collection of trails
tr1, ..., trn such that:

1. The union of all of the trails’ languages covers the lan-
guage of trmg. That is,

⋃

i∈[1,n] L(tri) ⊇ L(trmg).
2. Trails correlate to the branching decisions that depend

only on low security variables.
3. Each trail tri is such that every execution’s running time

can be described by a single function Pi, e.g. P lin
low. Hence

it can be proved that ∀π ∈ L(tri) ∩ JCK, that π |= Pi.

Thanks to the formal guarantees of our decomposition (Sec-
tion 3), this suffices to entail that the overall program is free
of timing channels.

More elaborate example. Consider the program loginSafe

at the top of Figure 1. This function looks up the given
username (a non-secret) and if the user is known, checks that
the given guess matches the user’s password. We return true
if so, and false otherwise.4

To the right of the code is a visual depiction of the a tree
of trail specifications. The top box represents the most gen-
eral trail, which is our starting point. With it, we compute
the running time of executions that follow this trail. This is
embodied in a component called BOUNDANALYSIS. Tech-
nically, to implement BOUNDANALYSIS we equip an off-
the-self abstract interpreter with the ability to be restricted to
a given trail, leverage the seeding technique [10] to compute
transition invariants [30], and match these invariants against
a database of complexity bound lemmas [16, 17]. The result
of applying BOUNDANALYSIS to trmg is that it computes a
lower bound of 8 and an upper bound of 23×g.len+10 (de-
picted as a cloud), where g.len is shorthand for guess.length.

With the range of running times in hand, we now ask
whether the range is narrow: that the running time of the
given executions is a function of low variables plus up to
a maximum constant value c, where c is a limit on the
observability of the attacker, i.e., the difference between the
longest and shortest running time is c. If we find that the
range between a given lower/upper bound is narrow then we
know we mark the code as free from timing channels. For
trmg, we find that this bound is not narrow. This means we

4 We do not consider the presence or non-presence of a username in the
database to be secret information, for this example.

need to partition trmg according to (only) tainted data, and
then try again, for each partition.

We do this using a component called REFINEPARTITION.
In this case it splits the most general trail into two based on
the branch at line 4. The parent-child relationship in the tree
shown in the figure tracks this subtrail relationship. Edges
are annotated as to whether the subtrail was chosen based
on branching on low data (when trying to prove safety) or
based on branching on high data (when trying to synthesize
an attack, discussed shortly). For legibility, we have replaced
each trail’s regular expression with an intuitive description
of the trail it specifies.

Now we compute the running times for these two trails
separately. The left-hand trail has running time 8—this is the
trail that exits on line 4. The right side has a running time that
is a direct function of g.len. These two running times indi-
vidually satisfy our narrowness criterion for timing channel
freedom. In particular, the constant one does trivially, and
the range on the right side does assuming that g.len ≤ n

for some fixed size that does not exceed the power of the at-
tacker (which can be specified); e.g., if n = 100, the running
time is equivalent to 21× g.len ± 210, which is safe assum-
ing the adversary’s observational power is bounded by the
constant 210. As such, because each one is acceptable, the
two together are as well, and the program is sure to be free
of timing channels.

2.3 Synthesizing Attacks

Our partitioning strategy is also useful for finding possible
attacks if a program is not free of timing channels. To see
how this works, consider the bottom of Figure 1. For this ex-
ample, there is a timing channel (based on a bug in the Tenex
password checker [24])—if the program exits on either lines
8 or 10, then the running time reveals the length of the prefix
of guess that matches the real password.

When trying to prove this program is timing-channel free,
the bound analysis will discover running time bounds simi-
lar to the correct example: a lower bound of 6 and an upper
bound of 20× g.len + 8. As such, it will partition again ac-
cording to the tainted branch on line 3. This time, though,
the running times of the two partition trails do not meet our
narrowness criterion: while the trail on the left hand side is
narrow (due to the exit on line 4), the trail on the right hand
side is not narrow: it has a constant lower bound and an up-
per bound that relies on both g.len and the length of the ac-
tual password. Unfortunately, we cannot easily sub-partition
the right side further, since branches in the loop also depend
on secret information—partitioning is only permitted on low

data. As such we have found a potential problem.
At this point, the tool changes gears and attempts to dis-

cover a vulnerability. To this end, REFINEPARTITION gener-
ates the next two trails (tr3 and tr4). These trails differ based
on whether or not the shortcut return statement can be taken
on Line 7 (or 10). For both tr3 and tr4, our toolchain com-
putes a lower bound of constant running time, corresponding



to the early exit on line 4. For tr4, our toolchain computes a
linear running time of 20 × g.len + 8 for the upper bound.
Meanwhile, tr3 forces the program to return early after enter-
ing the loop, either by taking the return statement on Line 8
or the return statement on Line 10. For tr3, our toolchain
computes a range of running times, different from the ones
computed for tr4. With this, the tool reports a vulnerability:
there are two trails (tr3 and tr4), the choice between them
depends on high data (arcs labeled sec), and yet they have
different running times. Therefore, for the same low input
there can be two different possible executions that yield dif-
ferent running times as the branching depends on the value
of the secret.

We call this output an attack specification. Because we
are working with a static analysis, the result of our tool is
not immediately two concrete traces. However, it provides
a specification for two traces that witness the attack. All
that remains is to ensure that these traces are feasible by
finding justifying inputs. This can be done manually by a
programmer or via an under-approximate analysis (e.g., a
symbolic execution [29]).

3. Semantic Partitioning

While our practical focus is timing channels, our decomposi-
tion strategy works for other k-safety properties, too. In this
section we provide a formalization of our general decom-
position. The key result is Theorem 3.1 which says that we
can conclude a k-safety property of the traces of a program,
using non-relational reasoning. Proving timing channel free-
dom, which is a 2-safety property, is a consequence of this
result. The details of our particular algorithm are given in the
sections that follow.

3.1 Programs, Traces, and k-Safety Properties

Let π range over execution traces. For a program C, we
write JCK for the set of all execution traces of C. A k-safety
property is a predicate q(C) of the following form:

q(C) , ∀π1, . . . , πk ∈ JCKk.Φq(π1, . . . , πk)

where Φq is a predicate on k-tuples of execution traces.
We may assume that a program trace contains whatever

information needed for the property, such as inputs, outputs,
intermediate states, and event times. For example, assuming
that π is a sequence of states in the execution, we may refer
to the input value of the variable x in the execution trace π
by in(π)[x].

3.2 Quotient Partition and Quotient Partitionable

Properties

A trace partition T for C is a finite set of non-empty sets of
traces T = {T1, . . . , Tn} such that JCK ⊆

⋃

1≤i≤n Ti. Even
though we use the name “partition”, we do not enforce the
Ti’s to be pairwise disjoint. Let ψ be a predicate on k-tuples
of execution traces. We say that T is a ψ-quotient partition

if the following is satisfied

∀π1, . . . , πk ∈ JCKk.
ψ(π1, . . . , πk) ⇒ ∃T ∈ T.

∧

1≤i≤k πi ∈ T.

Roughly, T is a ψ-quotient partition if for each k-tuple of
traces satisfying ψ, there is an element T ∈ T to which all
the k traces belong.

Example 3. Note that, for relational properties (i.e., when
k ≥ 2), any true-quotient partition T must have an element
T ∈ T such that JCK ⊆ T .

Example 4. The partitioning based on low (tainted) in-
puts described earlier can be formalized as a ψtcf-quotient
partition, where ψtcf(π1, π2) is the predicate in(π1)[ℓ] =
in(π2)[ℓ] with ℓ being the low (taint) variables (at times,
we may also write in(π1) =low in(π2) for the latter predi-
cate). For instance, recall the partition T>, T≤ described in
Section 2 where low is a low variable, T> contains all traces
with low > 0, and T≤ contains all traces with low ≤ 0. It
is easy to see that T = {T>, T≤} is a ψtcf-quotient parti-
tion.

Let q be a k-safety property, as defined above. We say that
q is ψ-quotient partitionable if

∀C.∀π1, . . . , πk ∈ JCKk.
(ψ(π1, . . . , πk) ⇒ Φq(π1, . . . , πk)) ⇒ Φq(π1, . . . , πk).

Note that the condition is equivalent to the following:
∀C.∀π1, . . . , πk ∈ JCKk.ψ(π1, . . . , πk) ∨ Φq(π1, . . . , πk).
In short, to verify or refute a ψ-quotient partitionable prop-
erty it suffices to only consider the k-tuples of execution
traces that satisfy ψ.

Example 5. Trivially, any k-safety property is true-quotient
partitionable. However, as remarked in Example 3, any such
partition must have an element containing all the traces.

Example 6. The timing channel freedom property is the
following 2-safety property:

tcf(C) , ∀π1, π2 ∈ JCK2.
in(π1)[ℓ] = in(π2)[ℓ] ⇒ time(π1) ≈ time(π2)

where ℓ are low variables and time(·) ≈ time(·) says that
the running times of the two executions are indistinguish-
able. It is easy to see that the property is ψtcf-quotient parti-
tionable with ψtcf(π1, π2) , in(π1)[ℓ] = in(π2)[ℓ].

3.3 Relational Analysis via Non-Relational Analysis

As we shall prove below, a quotient partitionable prop-
erty can be verified by verifying each quotient partition
component individually. A key insight of our approach is
that, often, individual partition components become isolated
enough to be amenable for verification via a non-relational
analysis. Next, we formalize the idea.



A non-relational property is of the form ∀π ∈ JCK.P (π)
where P is a predicate on an execution trace. We call such a
P a trace property.

Consider a k-safety property q again. We say that a trace
property P is relational-by-property-sharing for q, denoted
RBPS(P, q), if the following holds:

∀π1, . . . , πk.
∧

1≤i≤k P (πi) ⇒ Φq(π1, . . . , πk)

Roughly, RBPS(P, q) says that checking that P holds for
individual execution traces is sufficient for checking that Φq

holds for the k-tuples of the execution traces. Hence, the
condition implies that we can check the relational property
Φq on the tuples of traces from a partition component by
checking the non-relational property P on the component.

Example 7. Recall the timing channel freedom property tcf

from Example 6. Consider a non-relational complexity anal-
ysis which, given T , computes the lower and upper bound of
the running times for the execution traces in T , and checks
if the bound difference is small enough to be indistinguish-
able by an attacker. The analysis induces a non-relational
property Pf (π) where f is a high-independent function over
traces and Pf (π) is true iff the running time of π is close
enough to f(π). It is easy to see that RBPS(Pf , tcf).

When q is ψ-quotient partitionable, it is sufficient to
check a relational-by-property-sharing non-relational prop-
erty on each component of a ψ-quotient partition. More for-
mally, we have the following.

Theorem 3.1 (Soundness). Suppose that q is ψ-quotient

partitionable, and T is a ψ-quotient partition for a program

C. Then, q(C) holds if for each T ∈ T, there exists P such

that (i) RBPS(P, q), and (ii) for each π ∈ JCK ∩ T , P (π).

Proof. Let q(C) , ∀π1, . . . , πk ∈ JCKk.Φq(π1, . . . , πk).
Take π1, . . . , πk ∈ JCKk arbitrarily. It suffices to show
that Φq(π1, . . . , πk). Because q is ψ-quotient partitionable,
Φq(π1, . . . , πk) iff ψ(π1, . . . , πk) ⇒ Φq(π1, . . . , πk).

Therefore, suppose that ψ(π1, . . . , πk). It suffices to show
that Φq(π1, . . . , πk). Because JCK =

⋃

T, there must be
T ∈ T such that π1 ∈ T . Because T is a ψ-quotient partition
and ψ(π1, . . . , πk), it follows that πi ∈ T for all 1 ≤ i ≤ k.
Let P be a trace property satisfying conditions (i) and (ii) for
T . Then, we have Φq(π1, . . . , πk) by (ii) and the definition
of RBPS(P, q).

Example 8. Recall the trivial true-quotient partition from
Example 3. Recall from Example 5 that the any partition in
this case must have an element containing all JCK. There-
fore, in this case, Theorem 3.1 only implies that q(C) holds
if P holds for all execution traces of C for some relational-
by-property-sharing non-relational property P (wrt. JCK),
which is apparent from the definition.

Example 9. More generally, we would like to find a strong
ψ with which a k-safety property q is quotient partition-
able, and obtain a corresponding fine-grained ψ-quotient

partition. Such a fine-grained partition improves the analy-
sis efficiency as it divides the analysis problem into smaller
subproblems, and, perhaps more importantly, can increase
the analysis precision whereby the partition components be-
come isolated enough for the non-relational analysis to re-
turn precise results.

For example, for tcf, applying the non-relational com-
plexity analysis described in Example 7 on the entire trace
set JCK is unlikely to be successful since different traces are
likely to have widely different run times. By contrast, parti-
tioning the traces via the quotient factor ψtcf , in(π1)[ℓ] =
in(π2)[ℓ] allows dividing the problem so that traces that
have different low-security values may be analyzed sepa-
rately. The non-relational analysis may compute widely dif-
ferent running time bounds for different partition compo-
nents, but the overall verification may still succeed when the
computed bounds are narrow within each individual parti-
tion component.

Theorem 3.1 shows the soundness of our method. In fact,
the following result shows that the method is also complete.
That is, for any k-safety property q and a program C sat-
isfying q, there exist a quotient partition and corresponding
non-relational properties that can be used to verify that C
satisfies q via the method.

Theorem 3.2 (Completeness). Suppose q(C). Then, there

are ψ and T such that q is ψ-quotient partitionable, T is a

ψ-quotient partition for C, and, for each T ∈ T, there exists

P such that RBPS(P, q) and ∀π ∈ JCK ∩ T.P (π).

Proof. Let ψ be any predicate with which q is quotient par-
titionable, and T be any ψ-quotient partition for C (e.g.,
ψ = true and T = {JCK}). Define the non-relational prop-
erty P (π) = π ∈ JCK. Then, we have RBPS(P, q) and
∀π ∈ JCK ∩ T.P (π) for every T .

Completeness is arguably only of theoretical interest be-
cause, as shown in the proof, it holds independently of par-
tition choices and can use somewhat “unfair” non-relational
properties. (The proof essentially says that one can always
verify q non-relationally by checking the trace containment
against a program that is known to satisfy q).

Relational partition properties. While we have focused
our efforts on properties for each partition that are non-
relational, it is worth noting that this is not necessary: having
relational properties instead would still work. For timing
attacks, as explained earlier, we found that focusing on non-
relational properties is a good way to avoid explosion of the
state space.

More precisely, we can extend the notion of relational-by-
property-sharing so that for Θ, anm-ary relation, RBPS(Θ, q)
is the condition below.

∀π1, ..., πk.
∧

{π′

1
,...,π′

m
}⊆{π1,...,πk}

Θ(π′
1, . . . , π

′
m) ⇒ Φq(π1, . . . , πk)



Such relational properties Θ can replace the relational-by-
property-sharing non-relational properties P in our frame-
work. In other words, if q is ψ-partitionable, and T is a
ψ-quotient partition for C, then, q(C) holds if for each
T ∈ T, there exists ΘT such that RBPS(ΘT , q) and for each
π1, . . . , πm ∈ JCK∩T , ΘT (π1, . . . , πm). Furthermore, such
properties ΘT can be analysed in a manner similar to Φq , if
needed.

3.4 More General k-Safety Examples

The framework we presented above is general enough to ap-
ply to k-safety properties other than timing channel freedom.
We conclude this section with some examples.

2-safety. First, there are other commonly used 2-safety
properties on which our decomposition method can be ap-
plied. One is determinism, expressed as

det(C) , ∀ π1, π2.
in(π1) = in(π2) ⇒ out(π1) = out(π2).

Forψdet(π1, π2) defined as in(π1) = in(π2), the property
det(C) is ψdet-quotient partitionable. Then, for any function
g over the domain of the inputs of the traces, the property
Pg(π) , out(π) = g(in(π)) is such that RBPS(Pg, det)
holds. It follows from Theorem 3.1, that a program C is
deterministic, if we can find a partition T, where for each
T ∈ T, there exists a function gT such that RBPS(PgT , det)
and for each π ∈ JCK ∩ T, PgT (π).

k-safety, k > 2. The examples we have focused on until
now, are for the most part 2-safety properties, but this frame-
work is developed generally for k-safety properties where k
can be larger than 2. One such property is the channel ca-

pacity property [4, 25, 32, 41], which is a generalization of
timing channel freedom. Note that the timing-channel free-
dom is defined to be the property that there can only be one

running time (up to some small attacker-unobservable fluc-
tuation) per public input. The channel capacity property is
a relaxation which says that there are at most q (for some
fixed q ∈ Z) running times per public input. For instance,
the property can be formally written as follows for q = 2:

ccf(C) , ∀ π1, π2, π3 ∈ JCK3.
(

in(π1)[ℓ] = in(π2)[ℓ] = in(π3)[ℓ]
)

⇒
(

time(π1) ≈ time(π2)∨
time(π1) ≈ time(π3)∨
time(π2) ≈ time(π3)

)

.

The channel capacity property is a k-safety property
for k = q + 1 (in fact, the bound is tight [42, 43]), and
the timing channel property that we have been looking
at closely is a specialization where q = 1. Notice that
this k-safety property is ψccf-quotient partitionable with
ψccf(π1, π2, π3) , in(π1)[ℓ] = in(π2)[ℓ] = in(π3)[ℓ],
and the analysis closely resembles the one for the property
tcf(C) described earlier. In particular, following the same

line of thought as Example 7, properties Pf1,f2(π) for high-
independent functions f1 and f2, where Pf1,f2(π) holds iff
the running time of π is close enough to f1(π) or f2(π), are
such that RBPS(Pf1,f2 , ccf) holds.

4. Symbolic Partitioning with Trails

The concept of ψ-quotient partitioning is semantic and natu-
rally leads to the question of abstraction. This section intro-
duces trails, a symbolic representation with which we can it-
eratively construct a trace partition for proving timing chan-
nel freedom, or finding a counterexample.

4.1 Definition

Given a program C and its Control Flow Graph (CFG) GC ,
a trail expression tr is a regular expression where characters
represent the edges ofGC , such thatL(tr) is the set of strings
over the alphabet of the edges of GC that satisfy tr. We call
both the expressions as well as the set of strings they define
as trails, and use subscripted symbols tr for the expressions
and L(tr) to denote the set they define. Syntactically, a trail
tr is defined: tr ::= ǫ || b1b2 || tr1|tr2 || tr1 · tr2 || tr∗,

where L(ǫ) is the trail containing just the empty string, and
for each L(b1b2) represents a single letter of the alphabet
corresponding to the edge of GC from the block b1 to the
block b2. The definition of L is defined inductively in the
usual way. For example L(tr1|tr2) is the set of strings that
are either in L(tr1) or L(tr2).

Given the CFG GC of a program C, we define the con-

trol flow graph automaton AC of C to be the automaton
(Q,Σ, δ, q0, F ) over the alphabet Σ = E(GC) with set of
states Q being the blocks of GC and where a transition ex-
ists form a state q to a state p with letter (q, p) exactly when
there is an edge e in GC from the block q to the block p. The
initial state q0 is the entry block of GC and the set of final
states F is a singleton containing the exit block of GC .

Given a program C, we say a trail is a most general trail

of C, denoted trmg, if L(trmg) = L(AC), where L(AC)
is the language recognized by the Control Flow Graph Au-
tomaton AC of C. Notice that the set of traces described by
a trmg of C is always a (not necessarily strict) superset of
the actual possible traces of C.

4.2 Annotating Trails with low and high

We now describe how we annotate the constructors of a trail,
in particular the union (‘|’) and Kleene star (‘∗’) construc-
tors, as low-dependent and/or high-dependent. As the proce-
dure is the same for both low and high variables and depen-
dent blocks, we consider only low-dependent blocks below.

We assume a taint-analysis module that, given a program
C, returns a list of the variables in C and the blocks in the
CFG GC of C that are low-dependent, i.e., tainted. A block
can only be tainted if it is branching in some way. As a result,
there are exactly two outgoing edges from the block. We
assume a similar module for high-dependent variables and
blocks.



Suppose that a block b of the CFG GC is marked as low

-dependent, and let (b, b1) and (b, b2) be the two outgoing
edges from block b. Then the constructor ‘|’ in a trail tr1|tr2
is low-dependent with respect to b, if it is the outermost union
constructor such that for at least one of the two tri’s, one of
the edges from b appears in the set of traces defined by it,
whereas the other edge does not. Similarly, the construct ‘∗’
of a trail tr∗ is marked as low-dependent with respect to b, if
it is the outermost Kleene star constructor where one of the
edges (b, bi) is in the set of traces L(tr) and the other edge
is not. Formally, we have a recursive definition as to how
a trail constructor is marked as low/high-dependent (omitted
for lack of space).

If a union constructor of a trail is low-dependent, high-
dependent or both, we write ‘|l’, ‘|h’ or ‘|l,h’ respectively.
Similarly for ‘∗’ constructs we write ‘∗l ’, ‘∗h’ or ‘∗l,h’ for the
corresponding scenarios.

4.3 Partition Refinement

We now describe a technique that, given a ψSC-quotient
partition T, constructs a new partition T′ that is also ψSC-
quotient, using a collection of pluggable strategies. In what
follows, we call a partition T safe if it is a ψSC-quotient
partition for ψSC(π1, π2) , in(π1) =low in(π2) and we
call it vulnerable otherwise. A partition T′ is a refinement
of a partition T if for all T ′ ∈ T′ there is T ∈ T such that
T ′ ⊆ T .

One of the main goals of the algorithm is to produce
ψSC-quotient partitions. We do this using the annotations
on the trails and by representing a partition as a tree of trails
tr1, . . . , trn, such that a trail tri is a child of a trail trj only
if L(tri) ⊆ L(trj). Any set of nodes of the tree with trails
tr1, . . . , trn, forms a trail partition if L(tr1)∪ . . .∪L(trn) ⊇
L(trmg). As we described in Section 3, there is no need for
the partition components to be disjoint from each other, and
we don’t enforce such disjointness on the trails associated
with the different nodes of the tree.

Suppose we have a trail tr = tr1 |l tr2, where the union
constructor has been annotated as low-dependent with re-
spect to some low variables l1, . . . , lm. Consider then the par-
tition {L(tr1), L(tr2)} of L(tr). This partition can be seen to
be ψSC-quotient for the following reason. Suppose we have
two traces π1 and π2. According to the definition of ψSC-
quotient partition, we want to make sure that if the low in-
puts of these two traces are the same, then they are both in
L(tr1) or both in L(tr2). If this is the case though, it means
that both traces agree on the variables l1, . . . , lm, and thus all
traces will follow the same CFG edge, which in turn implies
that both π1 and π2 will either be in L(tr1) or in L(tr2).

We can apply a similar strategy for Kleene star construc-
tors. We also take a similar approach for trails dependent on
high data. We do this not when creating a partition to prove
side-channel absence, but rather when trying to synthesize a
possible attack when such a proof has failed.
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Figure 2. The overall algorithm.

4.4 Algorithm

The main procedure receives a program C as input, as
well as information about which variables and CFG blocks
are low/high (from a taint analysis) and attempts to prove
safety. Failing at that, the algorithm tries to produce an
attack specification. We further assume two procedures:
ANNOTATETRAIL(tr) uses the annotated blocks of G to an-
notate the trail constructors of the input trail tr (Section 4.2);
BOUNDANALYSIS(tr) calculates symbolic lower and upper
bound expressions for the traces described by the input trail
tr (Section 5). The main subprocedures of our algorithm are:

• REFINEPARTITION(T, {safe, vulnerable}): Produces a
refined partition T′ of T that is either safe or vulnera-
ble, depending on the second argument. In Section 4.3,
details are given on how the partitions are extracted by
the tree of trails that is constructed and how the annotated
trails obtained from ANNOTATETRAIL are used to ensure
ψ-quotientability.

• CHECKSAFE(TS): Returns yes if the given partition is
verifiably safe, and no otherwise. For each partition com-
ponent, this procedure employs BOUNDANALYSIS, at-
tempting to find symbolic upper and lower bounds for
the traces in the component. It returns yes if there is no
correlation between high variables and running time.

• CHECKATTACK(TV ): Similarly, this procedure returns
yes if there is a suspicion for an attack, and no other-
wise. To this end, it attempts to either find a partition
component where BOUNDANALYSIS calculates sym-
bolic bounds that are correlated with high variables, or
alternatively tries to find two components T1 and T2,
such that T = T1 ⊎ T2 is not a ψSC-quotient partition,
and the symbolic bounds of the two components differ
from each other (even if for each component individu-
ally the symbolic bounds obtained do not depend on high

variables).

The overall flow is as follows (depicted in Fig. 2 and
illustrated in Section 2). The initial input to the algorithm
is the partition comprising only the component JCK, repre-
sented by the most general trail trmg. The procedure goes
into a first refinement loop, that (i) refines the partition into
a safe one (on the first iteration the partition {JCK} is left
unchanged), and (ii) sends the refined partition to the pro-



cedure CHECKSAFE. If the latter returns yes, the iteration
stops and outputs that the program is verifiably safe. If not,
then the loop continues until either CHECKSAFE returns yes

(and thus outputs that the program is safe and the algorithm
stops) or REFINEPARTITION cannot further refine the given
partition into a safe one.

In the latter case, the algorithm enters a second refinement
loop, aimed at discovering an attack. It starts by having RE-
FINEPARTITION refine the given partition into a vulnerable
one, and then passes the new refined partition to CHECKAT-
TACK. Similarly, this loop continues until either CHECKAT-
TACK returns yes or REFINEPARTITION fails to further re-
fine the partition. In the first case, the algorithm outputs a set
of possible attack specifications, and in the second case the
algorithm simply indicates that it failed to produce a mean-
ingful summary.

In a sense, given enough strategies for REFINEPARTI-
TION the procedure can continue indefinitely, but in prac-
tice we provide the procedure with parameters around the
size and form of the partitions produced, that would cause
the program to exit earlier, and without giving a concrete an-
swer as to whether the program is safe or whether there is a
suspicion for an attack.

5. Implementation

We have implemented our technique as the Blazer tool for
proving the absence of timing-channel vulnerabilities in Java
bytecode programs. To process bytecode, Blazer uses the
WALA front-end [39], which transforms bytecode into an
SSA-based CFG. We used the information flow (taint) anal-
ysis JOANA [33] in order to annotate blocks as to whether
branching depends on low (taint) or high (secret) variables.

For working with trails, Blazer uses the brics automaton
library [13] to check language inclusion and construct in-
tersection, union, and complementation automata. We have
wrapped this library with a translation between trails (de-
scribed as regular expressions) and automata.

We have built a custom abstract interpreter on top of
WALA, using the Parma Polyhedra Library (PPL) [6] to
compute numerical invariants. The abstract interpreter can
be directed to restrict analysis to a given trail. We lever-
age the seeding technique [10] to compute transition in-
variants [30], and match these invariants against a database
of complexity-bound lemmas [16, 17]. This embodied in
the BOUNDANALYSIS component. While the abstract inter-
preter is interprocedural, BOUNDANALYSIS currently relies
on manually-specified bound summaries for interprocedural
function calls. In the future, these summaries will be com-
puted automatically.

When comparing running times of two nodes in the trails
tree, we need to know whether there is an observable dif-
ference between them. Blazer employs multiple approaches.
We have a generic component that computes the highest de-
gree of the complexity bound polynomial, a rough heuristic

that works for many examples. In other cases, a platform-
specific model of execution cost can be used. Here we make
assumptions about the maximum values of the input vari-
ables to compute the concrete number of instructions a
bound expression represents. Then the observable difference
between bounds can be defined as a threshold distance in
numbers of instructions. We currently use a simple machine
model in which each bytecode instruction is counted as a
single unit.

6. Evaluation

We evaluated the implementation of Blazer on 24 bench-
marks, including 6 examples drawn from the DARPA Space/-
Time Analysis for Cybersecurity (STAC) challenge prob-
lems [35] and 6 real-world programs in which timing at-
tacks were exploited and reported in cryptography pa-
pers [15, 22, 29]. Benchmarks are paired up so that there are
two versions: the “unsafe” version is expected to be vulnera-
ble to timing-channel attacks while the “safe” one is not. For
third-party benchmarks, we created safe versions by hand
(except for User). Our experiment harness executes Blazer

on both the safe and unsafe versions of each benchmark.

6.1 Benchmarks

Our benchmarks, which reflect a broad range of code pat-
terns, are up to 100 basic blocks in size (details reported later
in this section). Fig. 3 illustrates some selected examples.

• MicroBench. These are hand-crafted to exercise the var-
ious aspects of Blazer. We start with simple examples;
nosecret_safe tests the basics of side-channel detec-
tion, which can only occur when there is a secret. The
others are more intricate. The loopAndBranch bench-
mark, for instance, is shown in Fig. 3. At first this seems
to have a vulnerability, but the potentially vulnerable trail
is infeasible, which is caught by the abstract interpreter.
Also shown in Fig. 3 is the classic Unix login vulnera-
bility that leaks usernames. When line 7 is removed, the
program takes longer when a username exists because it
hashes the input password via md5.

• STAC. Several benchmarks were extracted from the
DARPA Space/Time Analysis for Cybersecurity (STAC)
engagement problems [35]. modPow1 (shown in Fig. 3)
and modPow2 perform cryptographic arithmetic using the
Java BigInteger library.

• Literature. We have also crafted examples taken from
papers that demonstrate timing attacks on real-world
cryptographic methods. These include Genkin et al. [15]
(GPT), Kocher [22] (K96), and Pasareanu et al. [29]
(PPM16). The example from PPM16 is discussed in Sec-
tion 2 and shown in Fig. 1.

Blazer supports manually-specified summaries of running
times so we specify running times for library calls such
as those to the Java BigInteger library (in modPow# and
Cryptography benchmarks).



1 void loopAndbranch_safe(int high, int low) {

2 int i = high;

3 if(low < 0) { while(i > 0) i−−; }

4 else {

5 low = low + 10; // low is above 0

6 if(low >= 10) { int j = high; while(j>0) j−−; }

7 else { if(high<0) { int k = high; while (k>0) k−−; } }

8 } }

1 boolean login_safe(String u, String p) {

2 boolean outcome = false;

3 if (map.containsKey(u)) {

4 if (map.get(u).equals(md5(p)))

5 outcome = true;

6 } else {

7 if (map.get(u).equals(md5(p))) { } // remove for unsafe

8 }

9 return outcome; }

1 BigInteger modPow1_safe(BigInteger base, BigInteger

exponent, BigInteger modulus) {

2 BigInteger s = BigInteger.valueOf(1);

3 int width = exponent.bitLength();

4 for (int i = 0; i < width; i++) {

5 s = s.multiply(s).mod(modulus);

6 if (exponent.testBit(width − i − 1))

7 s = s.multiply(base).mod(modulus);

8 else s.multiply(base).mod(modulus); // remove for

unsafe

9 }

10 return s; }

Figure 3. Some examples selected from the benchmarks.
For lack of space, only the main methods are shown.

Observer modeling. As discussed in the implementation
section, observable running time differences are modeled
in several ways. We designed the MicroBench so that dis-
tinguishing between safe and unsafe is possible by evaluat-
ing computational complexity, e.g., linear vs. quadratic. The
variables are assumed to be unbounded, while a safe pro-
gram is assumed to be one where the symbolic running times
have the same polynomial degree. While sufficient for these
hand-crafted micro-benchmarks, this model of observability
is too simplistic for real-world code.

For the real-world examples from STAC and Literature,
we use a model of observable running time based on con-
crete differences in bytecode instructions between partitions.
We assume some reasonable maximum for the input vari-
ables, e.g., 4096 bits for the cryptographic benchmarks.
Then we plug these values into the symbolic bound expres-
sions to get a concrete estimate of the maximum number
of bytecode instructions. Using this method, an observable
difference is defined by some minimum threshold in the dif-
ference between the number of instructions. For these bench-
marks, we use a low number of instructions (25k) to define

Safety w/Attack

Benchmark Size Time (s) Time (s)

MicroBench

array_safe 16 1.60 –
array_unsafe 14 0.16 0.70
loopBranch_safe 15 0.23 –
loopBranch_unsafe 15 0.65 1.54
nosecret_safe 7 0.35 –
notaint_unsafe 9 0.28 1.77
sanity_safe 10 0.63 –
sanity_unsafe 9 0.30 0.58
straightline_safe 7 0.21 –
straightline_unsafe 7 22.20 28.49
unixlogin_safe 16 0.86 –
unixlogin_unsafe 11 0.77 1.27
STAC

modPow1_safe 18 1.47 –
modPow1_unsafe 58 218.54 464.52
modPow2_safe 20 1.62 –
modPow2_unsafe 106 7813.68 31758.92
pwdEqual_safe 16 2.70 –
pwdEqual_unsafe 15 1.30 2.90
Literature

gpt14_safe 15 1.43 –
gpt14_unsafe 26 219.30 1554.64
k96_safe 17 0.70 –
k96_unsafe 15 1.29 3.14
login_safe 18 6.54 –
login_unsafe 17 4.40 9.10

Table 1. The results of applying our tool Blazer to a variety
of benchmarks: hand-made examples, examples from the
literature [15, 22, 29], and extracted from DARPA STAC
challenge problems. Median running times are shown for
safety verification alone as well as safety verification plus
the search for an attack specification. The safe benchmarks
need no search for attack specification, so they have – instead
of a running time.

the observable difference in running time. In real-world ap-
plications of this verification, observability depends on many
factors, including hardware, operating system, network la-
tency, etc, and would need to have application-specific cali-
bration.

6.2 Results

The benchmarks were run sequentially on a single commod-
ity PC with a quad-core 3.07GHz processor and 12GB of
RAM. Running time is collected for both safety verification
alone as well as safety verification plus the search for an
attack specification. The latter running time only applies to
the unsafe benchmark, since the tool halts if it proves safety.
Running time is measured by performing five runs and tak-
ing the median.



Table 1 shows the results. The Benchmark column iden-
tifies the benchmark’s method and alternates between the
safe and unsafe versions. Size indicates the number of ba-
sic blocks in the method’s control-flow graph. The Safety

Time column shows the tool’s median running time in sec-
onds for safety verification alone, while the w/Attack Time

column is the median running for safety verification and the
subsequent search for an attack specification.

Our tool is sound: it either determines the program is
safe, finds an attack specification, or gives up. For every safe
benchmark, Blazer verified the safety of the benchmark. In
all unsafe benchmarks, the tool found an attack specification,
i.e., two candidate subtrails with differing running times,
except for gpt14_unsafe.

For most benchmarks, the safety verification takes only a
few seconds, save some notable outliers. The running time
for generating an attack specification, which includes the
safety verification, often takes longer, because it is a com-
putationally more intensive step. It takes the trails tree out-
put from safety verification and further decomposing it into
subtrails.

As for the outliers, the running time appears loosely
related to the number of basic blocks in the program,
as shown by the very high running times of the outliers
modPow1_unsafe, modPow2_unsafe, and gpt14_unsafe.
This is due to a combinatorial explosion of subtrails, super-
linear with respect to the number of conditional branches, as
well as the increased memory pressure of storing and pro-
cessing the tree o decomposed subtrails. The running time
for straightline_unsafe is an exception to this relation-
ship: it has few basic blocks but a long running time. This
is likely due to a particularly large basic block that has 90
instructions, increasing the processing time of the subtrails
that contain it.

7. Related work

To the best of our knowledge, our approach is the first
method that tackles the timing channel freedom (TCF) ver-
ification problem by iteratively decomposing the problem
into sub-problems that require non-relational reasoning.

Type-based enforcement. TCF is a kind of noninterfer-

ence: no matter the secret inputs to the program, the run-
ning times observable by adversary when given the same
set of non-secret inputs are (roughly) the same. Noninter-
ference properties can be enforced by type systems. For ex-
ample, work by Agat [1] uses a Volpano-Irvine-Smith-style
non-interference type system [38] to transform a given pro-
gram into one without timing channels (basically, by insert-
ing padding no-op instructions in places identified by the
type system). The type-based approach can also be used
to check timing channel security, as shown by Hedin and
Sands [19]. Type-based enforcement is efficient but often
imprecise, falsely sounding the alarm on correct programs.

For example, here are two trivial examples that cannot be
typed with such approaches even though they are secure:

1 void ex1(x,h) { if false { while (h < x) { h++; } }}

2 void ex2(x,y) {

3 if (h > x) { tick; } else { tick;tick;}

4 if (h <= x) { tick; } else { tick;tick; } }

Our technique is able to prove that these examples safe
because, through our use of trails, we can determine fea-
sibility of different path cases. A more elaborate example
is the loopAndBranch micro-benchmark, shown in Fig. 3
and discussed in Section 6. The safety of programs such as
loopAndBranch can depend on subtle conditions and our
strategy of decomposition enables us to truly leverage in-
variants from abstract interpretation to this end.

Quantitative analysis. Quantitative information flow (QIF)
is a quantitative generalization of non-interference founded
on rigorous information-theoretic principles [4, 25, 32, 41]
(a channel is non-interferent iff its quantitative information
flow is zero). Recently, researchers have sought to apply QIF
to side channel security [14, 23, 29, 45]. For instance, Zhang
et al. [45] propose an approach that ensures the bounded-
ness of the quantity of information leaked by the timing
channel. Their approach addresses low-level issues such as
cache uses, and comprises type-based analysis, hardware as-
sistance, and predictive timing mitigation. The quantitative
approach is also taken in the work by Doychev et al. [14] on
a static analysis for detecting leaks due to cache uses, and
the work by Pasareanu et al. [29] that quantifies information
leak amount via symbolic execution and model counting.
Due to its under-approximate nature, Pasareanu et al.’s tech-
nique is more suited to finding possible violations of TCF,
rather than verifying it.

Our analysis does not address the quantitative aspect of
timing channel security. However, ideas from our approach
may apply to them [42, 43], when viewed as k-safety prob-
lems (discussed more below). Moreover, our approach may
complement Pasareanu et al.: Our tool emits attack specifi-
cations that could be used to construct a slice of the program
where there is likely to be an attack, which can given as input
to their tool.

Self-composition. Generally speaking, TCF is a 2-safety

property in that it relates 2 executions. In particular, it re-
lates all pairs of executions such that if they agree on non-
secret inputs then they (roughy) agree on running time. A
general approach to verifying k-safety properties (which re-
late k ≥ 2 executions) is to use self-composition [7, 12,
27, 36, 37, 43]. The approach reduces the k-safety problem
to a 1-safety problem by composing (sequentially, in par-
allel, or in an interleaving fashion [27, 36, 37]) k copies
of the given program prior to applying a (standard) ver-
ification technique. More precisely, the k-safety problem
∀π1, . . . , πk ∈ JCKk.Φ(π1, . . . , πk) is reduced to the 1-
safety problem ∀π ∈ JC(k)K.Φ(π(1), . . . , π(k)) where C(k)



is the composed program whose execution trace is a k-tuple
of (copies of) C’s execution traces and π(i) projects the i-
th trace in the composite trace π. The approach is clearly
sound and complete for arbitrary k-safety properties, rela-
tive to the soundness and completeness of the backend (1-
)safety verifier. However, it trades robustness for scalability
due to the rather brute force reduction, and the naïve self-
composition approach only scales to relatively simple exam-
ples when paired with an automatic backend safety verifier.

Almedia et al. [2] have pursued the self-composition-
based approach to timing channel security verification in
particular, with mixed results. More recently, they have
proposed to check if a program is constant-time by self-
composition [3]. A program being constant-time is a stronger
requirement than timing channel security, and it requires the
program’s control flow to be independent of the high secu-
rity data. The strict requirement can be exploited to form a
tightly coupled self-composition, thereby allowing efficient
verification [27, 36, 37] (further discussed below).

Other methods for relational reasoning. Other methods
have also been considered for verifying k-safety (and, more
generally, relational) problems. Closely related to the self-
composition approach is the recent work by Sousa and Dil-
lig [34]. Similar to self-composition, their approach (implic-
itly) creates k copies of the program, but attempts to syn-
chronize the verification’s reasoning process so that it keeps
the program flow of the different copies in lockstep as much
as possible. This is done via intricate program logic rules
that they call Cartesian Hoare Logic. Similar to the inter-
leaving self-composition technique [27, 36, 37], such a lock-
step reasoning improves the performance of the approach by
more tightly coupling the key invariants across the program
copies. Relational program logics pre-date Cartesian Hoare
Logic and can be traced back to the product programs of
Reynolds [31]. More recently, Benton introduced relational
logics for program transformations and equivalence [9], and
Yang provided a relational version of separation logic [40].
Other recent uses of product programs for program equiva-
lence include [28, 44]. Also, a recent work by Assaf et al. [5]
proposes to verify k-safety (and more general hyper-safety)
problems via an abstract interpretation over program trace
sets (as opposed to traces), which may be understood as an
abstract interpretation over a (possibly unbounded) product
of program copies. Recent work by Çiçek et al. on relational

cost analysis [11] describes a program analysis for check-
ing and inferring resource-usage properties spanning multi-
ple programs. Such an analysis can potentially be used for
proving timing channel security by applying it to the pro-
gram copies.

In contrast to self composition and its related variants
discussed above, the method proposed in this paper does
not (explicitly or implicitly) make program copies and re-
duce the problem to a 1-safety problem. Instead, it decom-
poses the given program by utilizing a certain decomposi-

tion property of the target k-safety problem that we call ψ-

quotient partitionability. This way, we obtain the answer for
the whole by solving the decomposed sub-problems. Note
that, in our approach, a non-relational analysis (i.e., 1-safety
verification) is not applied to the self-composed program
that completely expresses the original k-safety problem, but
instead, it is applied to decomposed sub-problems of the
original.

Path sensitivity. Our trails act as specifications for how
a program can be restricted based on certain branching
choices. This is similar to path sensitivity approaches such
as trace partitioning [26]. Similarly, PAGAI [21] employs
a technique called path focusing [20] to guide an abstract
interpreter to consider certain paths at a time. In compari-
son to control-flow refinement (CFR) [17] our trails are a
generalization: we allow more complicated forms of loop
unrolling (arbitrary regexes) and trails may eliminate exe-
cutions whereas CFR always encompasses all executions.
To our knowledge, none of the above approaches have been
used to reason about relational properties, permit low-vs-
high annotations, nor define a decomposition that reduces a
relational property to trail/path (i.e., trace) properties.

8. Conclusion

We have presented a novel technique for proving that a pro-
gram is free of timing channels. Our approach, which we
have proved sound, is based on a general decomposition
technique that reduces k-safety verification (timing channel
freedom has k = 2) to a task fit for a non-relational analy-
sis. Our decomposition proceeds iteratively by symbolically
synthesizing path-based partitions (“trails”) that case-split in
instances of taint-based or secret-based branching. The for-
mer is used to prove timing channel freedom, while the lat-
ter helps identify particular vulnerabilities. We implemented
our approach in a tool called Blazer and demonstrated its
effectiveness on a collection of 25 benchmark examples, in-
cluding 6 drawn from the STAC challenge problems and 7
from the cryptography literature. We believe that our decom-
position sets the stage for the development of more powerful
relational analyses and/or other k-safety property verifiers.
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