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Abstract

We present a new static analysis for race freedom and race de-
tection. The analysis checks race freedom by reducing tb-pr
lem to (rational) linear programming. Unlike conventiorsaatic
analyses for race freedom or race detection, our analysiglav
explicit computation of locksets and lock linearity/madiasness.
Our analysis can handle a variety of synchronization ididinas
more conventional approaches often have difficulties veitith as
thread joining, semaphores, and signals. We achieve effigiby
utilizing modern linear programming solvers that can glyidolve
large linear programming instances. This paper reportheridr-
mal properties of the analysis and the experience with amgplgn
implementation to real world C programs.

Categories and Subject Descriptors  F.3.2 [Logics and Meaning
of Program$. Semantics of Programming Languages—Program
analysis; F.3.3Llogics and Meaning of PrograrhsStudies of
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Figurel. The syntax of the simple concurrent language.

This paper presents a different approach for staticallgking
race freedom. The key idea is to reduce the race checkinggonob

to a linear programming problem such that if there existdationm

1. Introduction

to the constructed linear programming instance, then thgram

is guaranteed to be race free. In contrast to previous apipesa

Race condition occurs when one thread writes to a memoryidoca
that another thread is concurrently writing or reading. dRfxee-
dom, the absence of race conditions, is a basic buildingkifimc
developing and verifying shared-memory parallel prograamsd
static analysis for race freedom and race detection hasdean-
tive focus of research.

our approach only needs standard may-aliasing informatiod
does not require locksets and lock linearity/must-aliasnBy uti-
lizing efficient linear programming algorithms, we achigweth
good theoretical computational complexity (polynomiattie size
of the program), and good practical running times, with@auatiic-
ing soundness. The approach can be extended to synchionizat

In many static (or dynamic) analyses for race freedom or race methods beyond simple lock-based idioms. The prototypdeimp

detection, the central idea is to complaeksets A lockset is the

mentation described in Section 3 handles programming iglitt

set of locks that are always held when accessing some memoryother analyses often have difficulties with, such as threaung,

location (abstract memory location in static analyseshghat a
potential race is detected when the lockset is empty. It oitant
that the locks in the locksets aliaear [20] (or must-alias[17]),
in the sense that each lock corresponds to a unique conoite |
Inferring locksets and lock linearity/must-aliasnesgistdly can
be non-trivial, especially in the presence of non-lexicaitoped
locks, that sometimes analyses make optimistic approiomst
Also, this approach is usually limited to locks and othekltike
synchronization idioms.

2. Formal Aspects

Figure 1 shows a simple first order expression language Gidtn
effects) we use to present the key concepts of the analykis. T
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er;eq for let = = e

semaphores, signals, and read-write locks, as well as régdo-
cesses and local accesses.
The rest of the paper is organized as follows. Section 2-ntro
duces the key concepts with a toy language that containdackg
and thread spawning/joining, and formally proves sounsinsc-
tion 3 discusses the implementation, LP-Race, a tool foeatet
ing races in multithreaded C programs. Section 4 discustated
work, Section 5 discusses open issues, and Section 6 casclud

language is minimized in ordered to focus on the novel aspafct
the analysis. We briefly describe the syntax. Variables anged
over by meta variables, z1, etc. The constructet = = e¢; in e2
binds the result of evaluating, to = and evaluates.. We write
in ez such thatz is not free ine..
The language contains non-deterministic branches and Iddpe



let x=ref 0 in

spawn(newtid){!x}; let x=ref 0 in

let 1 =newlock in

el (@ spawn(newtid){
lock 1,
let x=ref 0 in Ix;
let t = newtid in 10121111;‘31‘ 1}
spawn (1) {Ix}: Lock L
U =1
;]{0'1=nlt, unlock 1
. C
(b) (©)

Figure 2. Simple race (a), and race avoidance via thread joining

(b) and locking (c).

t.E| Flp | p|lF

letx=Fine|ref E|E:=¢|v:=FE|E
lock FE | unlock F | freelock E
spawn(E){e} | join

&=

Figure3. The evaluation contexts

construcspawn(e;){e2} creates a new thread to evaluateHere,
e is athread identifierthat can be used gbin e to join threads.
Multiple threads are allowed to have the same thread identithe
language contains reference cells, that could be writtehraad
concurrently. Finally, the language contains syntax faating,
deleting, acquiring, and releasing locks.

Figure 2 (a) shows a simple example program that contains a
read write race. The spawned thread may read from the referen

cell bound to the variable while the spawner thread writes to it.

Such a race can be avoided by using locks, as shown in (c), or by

using join to wait until the other thread finishes, as showfb)n

2.1 TheSemantics

We formally define the semantics of the language. The sensanti

is defined as small-step reductions from states to statsmatéis a

quadruple(¢, K, 6, p) where is the set of currently allocated thread

identifiers,x is the currentock state a mapping from the currently

available locks tqU, L} whereU denotes that the lock is unlocked

andL denotes that the lock is lockeflljs astoremappinglocations
to values andp is aprogram stateValues,v, are defined as

ve=t|l]|l]|n
where the symbot ranges over thread identifiersranges over

locks, and/ ranges over locations. A program state is defined as

follows.
e = --- | v
pu=te|pi|lp2

Here,e is extended with values. Intuitively, an (extended) expres

sion prefixed by a thread identifigre, denotes a thread with the
thread identified by whose current program countereiswhereas

p1 || p2 denotes a parallel composition of threads. Therefore, a

program state is a parallel composition of finitely many espr
sions prefixed by thread identifiers. We let the parallel cositipn
operator}| be commutative and associative.

We define the following standard notational convention.e@iv
a mapping (i.e., a set-theoretic functiofy) f[a — b] denotes the

mapping{c — f(c) | ¢ € dom(f) \ {a}} U {a — b}.

Figure 3 defines evaluation contexts. Figure 4 shows thecredu

tion rules.1f1, 12, Loop, andL et are straightforward. Note that
because the language is an expression language, evengsppre

(17,0, F[if » then ¢, e1se ca]) — (n.r 0, Flea]) 1%

(¢, k,0, F[if * then e; else e3]) — (¢, K, 0, Fle2]) 2
(¢, k, 0, Flwhile * do €)) — L-oop
(¢, k,0, F[if * then (e;while * do e) else 0])
(¢,k,6,F[let z =v ine]) — (1, k,0, Fle[v/z]]) Let
t ¢ dom(s)
(1,70, Flnewtid]) — (U {th,m 0, F[f]) ol
(0.7, 0, Flspamn(D{c}]) = (1m0, F0] || o) P2
(070, F3oin 4] || £.0) = (6,0, Flo]) 0"
¢ ¢ dom()
(¢, K, 0, Flref v]) — (¢, K, 0/ — v], F[{]) Ref
om0 F ) = (o6, Flo0)) "%
(00, FlC = o)) — (o, 01 o o, FL0]) VT1te
I ¢ dom(x)
(17,0, Flnewlock]) — (1,7l — 0,0, F[)) et
k=rk"U{l— U} 1¢domk')
(1,70, Fltreelock I]) — (1,70, Fl0)) oo
k(l)=1U Lok
(¢, K, 60, F[lock l]) — (¢, k[l — L], 6, F[0]) ¢
Ulck

(¢, K, 6, Flunlock l]) — (¢, k[l — U], 0, F[0])

Figure4. The operational semantics.

needs to evaluate to a value if they terminate, and so wé ase
the “unit” value for expressions that are evaluated purehtlfeir
effects.

NewT creates a fresh thread identifi@pawn spawns a new
thread using the given thread identifier, alwih waits for a thread
with the thread identifier to finisiRef allocates a new reference
cell that can be read bigead and written byWrite. NewL creates
a new lock, initialized to unlocked status. If the lock is arkted,
Lck may acquire the lock, setting the lock status to lockeltk
releases the lock, setting the lock status to unlockeeel deletes
a lock if the lock is unlocket

We write (t1,k1,01,p1) —* (t2,k2,02,p2) for zero or
more reduction steps from the stata, <1, 60:1,p1) to the state
(12, K2, 02, p2). We now formally define race freedom.

DEFINITION 2.1 (Race FreedomA state(t1, k1,61, p1) is said
to be race free if for any statgis,x2,02,p2) such that
(¢1,K1,01,p1) =" (L2, K2, 02, p2), p2 is not of the following form.

o Bi[0 :=v1] || Fol :=s]

1This modelspthread_mutex_destroy in the POSIX threads library.



o Fy[0 =] || Fa[1]

2.2 TheType System

We formulate the analysis as a type inference problem fopa ty
system. The type system guarantees that a typable prograweis
free. The types are defined as follows.

T u= ref(p,7) (reference cells
| int integers

|  lock(¥) (locks

| tid(P) (thread identifier$

The typeref(p, 7) denotes a type of a reference cell pointing to
the abstract locationp, storing a value of the type. Symbolsy,
¥4, etc. range overapability mappingsA capability mapping is a
function from abstract locations to non-negative ratiaomainbers
[0, 00).

Capability mappings denote access capabilities to alhdtea:
tions. Each thread holds some amount of capabilities, septéng
the access capabilities of the thread. Intuitively, a thitealding ca-
pabilities ¥ such that¥(p) > 1 is allowed to write to the abstract
locationp, and a thread holding capabiliti@ssuch that¥ (p) > 0
is allowed read from the abstract locatipfithus the write capabil-
ity implies the read capability). The type system ensurasttte to-
tal amount of capabilities summed across all live threads isost
1 for any abstraction location. This property ensures ragedom
as there cannot be two threads, say holding capabilltieand ¥,
respectively, such that one thread can write to an abswaatibn
p, (i.e., ¥1(p) > 1) while the other thread can read or write to it
(i.e.,T2(p) > 0), because then the total amount of capabilities for
p would exceed.

Threads maytransfer capabilities at synchronization points,
which in this simple language, is when accessing locks aad/sp
ing and joining threads. The capabilitids appearing in a lock
type lock(¥) represents the amount of capabilities transferred to
the thread when acquiring the lock, and transferred fromnwiee
leasing the lock. The capabilitiels appearing in a thread identifier

typetid(¥) represents the amount of capabilities transferred to the

joiner thread by joining a thread with the thread identifier.

Figure 5 shows the type checking rules. The judgement are of

the formI", ¥, F e : 7, U2 wherel is a type environment mapping
variables to their types, th@e-capability¥; is the capabilities be-
fore the evaluation of, the post-capability, is the capabilities
after the evaluation of, andr is the type ofe. VAR andINT are
self-explanatoryL ET, |F, WHIL E make sure that capabilities are
“conserved” (i.e., not created out of thin air) through tlegusen-
tial flow of computation. The inequality; > U, is defined as
Vp.Wi(p) = ¥a(p).

Also, the subtraction of capabilities is defined point-wase
U — Uy = Ap.Ui(p) — P2(p). Note that because the range
of any capability mapping is restricted to non-negativéorsls,
the subtraction is undefined if the result is negative. Sirlyil the
addition of capabilities is defined 85 + V2 = A\p. V1 (p)+V2(p).

NEWT, SPAWN, andJOIN type thread creation and thread
joining. At SPAWN, the parent thread gives part of its capabilities,
U3, to the newly created thread, and 8@ — ¥5 amount of
capabilities are left for the continuation of the parene#id. The
capabilities that are left after the spawned thread finistiras or
at least a part of it¥,), may be recovered by using the thread
identifier. At JOIN, the joiner thread gains capabilities from the
joined thread through the thread identifier.

REF, WRITE, and READ type reference cell accesses. As
remarked aboveREAD requires a positive amount of capability
for the abstract location, anRITE requires capabilities at least
1. Because there is no notion of lockset, these rules do nettass
anything about which locks protect the reference cell. Nbsg

LYkax:T'(x),¥ VAR T, OFn:int, ¥ INT
DWhe :m, ¥ Dz—n],Uikes:m, Vs
I, Uk letxz=e1 ines: T2, Vo LET
F,q/}_6117',q/1 \1112\113
F7\I’F€2:T,\I’2 \1122\1/3
I, Ut if * then e; else ez : 7, V3 IF
LU, kFe:r, Uy Uy>T; U>U
LPe T TRe T = Tl WHILE

I', ¥ I while * do e : int, ¥,

I, ¥ F newtid : tid(¥,), ¥ NEWT

F,\I/ }—61 :tid(\Ifl),\PQ F,\Ilg }—62 : T,\I/4 \114 2 qfl
I', U |- spawn(e;){ez2} : int, ¥y — U3

SPAWN

F7 Uhke: tid(\1’1), \112

T, Uk joine:int, Uy + ¥y JOIN

L,Uke:r,U,
I, ¥+ ref e:ref(p,7), U1

REF

DU ker:reflp,7), U1 I,¥ikex:7,¥y Wa(p)>1
F,\Ill—el:=62:int,\112

WRITE

L, UtEe:reflp,7),¥1 Yi(p) >0

WUEle: 7, READ
I, ¥ | newlock : lock(¥q), ¥ — Wy NEWL
[, ¥ Fe:lock(Wy), Uy
- FREEL
I', U I freelock e :int, Uy + W,
IWhe: |0Ck(\111)7 Uy
- LCK
I' Uk locke:int, Uy + ¥y
T, U Fe:lock(¥y), ¥y
ULCK

T', ¥+ unlock e : int, Uy — Uy

Figure5. The type checking rules.

READ naturally allows parallel reads (i.e., read-only accesses
becauser threads may each holtl/n amount of capabilities for
the same abstract location and still satisfy the “at mogiroperty.

NEWL types lock creations. As remarked above, releasing a
lock loses the amount of capabilities associated with tluk.lo
Because new locks are initialized to the unlocked state ulveract
the capabilities as if the lock is unlocked. DualBREEL gets
back the capability associated with the lock for destroyihg
lock. At LCK, the thread gains the capabilities, andJatCK, the
capabilities are lost.

The simplicity of these rules may appear deceptive. Rekeesc
familiar with lockset-based race analysis might have etqueto
see a rule requiring the locks to bieear [20] (or must-aliag17]).

A formal proof of correctness appears at the end of the sectio
To see how the type system avoids linearity/must-aliasreegsre-
ment, suppose the rulMEWL is replaced by the following un-



sound rule.
NEWL -unsound

I, ¥ + newlock : lock(¥q), ¥
Consider the following program.

let x=ref 0 in
let 11 = newlock in
let 12 = newlock in
spawn(newtid){
lock 11; !x;unlock 11 };
lock 12;x := 1;unlock 12

The program has a race onbecause two threads concurrently
accessx (by holding different locks). However, wittNEWL-
unsound, the program would type check (cf. Definition 2.3) by
assigning the typ&ck(¥) to both11 and12 such that¥(p) = 1
wherex has the typeef(p, int). NEWL prevents such a situation
by making sure that capabilities (like above) are not created “out
of thin air”. In practice, this implies that if the type systeannot
distinguish two locks that are alive at the same time suchdha
least one of them is used to guard some location, then thestyge
tem may report a false positive because the total capabibityld
exceedl at one of the lock allocation point. The locality extension
discussed in Section 3.1.5 can soundly allow may-aliaseddcks
to be used to guard locations in some situations.

We now define the notion of a well-typed state. We extend type
environments so that they map values to types as well aslesia
Non-integer values are typed by the following rule.

IO Fov:T(v),¥
We define the notion of a well-typed store.
DEFINITION 2.2 (Well-typed Store)We writeT” + 6 if for each
¢ edom@),T, 0 F6(¢) : 7,0 whereI'(¢) = ref(p, 7) for somep.

Here, 0 is the null capability, defined a8 = A\p.0. Threads are
typed by the following rule, which says that the capabtitieft at
the end of the thread is at least the capabilities obtairtabjeining
the thread.

D,Whe: U, I(t) =tid(¥2)
IUFte:int 0
Let cap(lock(¥)) = W. Recall that any program state is a parallel

composition of finitely many threads, that is, it is of therfor
ti.e1 || t2.e2 || ... || tn.en Wheren is the number of threads.

Wy > Wy

DEFINITION 2.3 (Well-typed State)Letp = t1.e1 || ... || tn-en
such that there are no free variableszinWe writel™ - (¢, , 0, p)
if there exist¥, ..., ¥,, such that

(1) Forallt € +, T'(t) is a thread identifier type.
(2) Foralll € domk), I'(1) is a lock type.

() Ir'+e.

@) Forallie {1,...,n},[,¥; F t;.e; :int, 0.
(5) LetU = {l | x(l) = U}. Let

U= capl'(l)+ > W

leu i=1
Thenvp.U(p) <1

The first three conditions ensure thatk, § are well-typed. The
condition (4) states that all threads are well-typed. Thadi@n
(5) asserts that the total amount of capabilities summeakaatll
threads (i.e..>"" , ¥;) and the amount of capabilities obtainable
by acquiring locks (i.e.) ., cap(I'({))) is at mostl for any
abstract location.

Well-typedness is preserved across reductions.

LEMMA 2.4 (Preservation)Supposel’ + (1, 51,61,p1) and
(L17 K1, 9171)1) - (L27 K2, 027p2)' Then’ there EXiStE/ 2 I such
thatT” F (2, k2, 02, p2).

Proof: By case analysis on the reduction.

Note that the condition (5) of Definition 2.3 implies that allwe
typed state cannot have two threads such that one threadng tr
to write to a location and the other thread is accessing theesa
location. More formally,

LEMMA 2.5. Suppose is of the formF1[¢ :=v1] || F2[l :=vo]
or F1[¢ :=v] || F»[1]. Thenforndl, T F (¢, s, 6, p).

The soundness of the type system follows from the above lemma

THEOREM2.6. Suppose” + (¢, k,0,p). Then(s, k, 0, p) is race
free.

Proof: Straightforward from Lemma 2.4, Lemma 2.5, and Defini
tion 2.1.0

The type system is inspired by researchfractional permis-
sions/capabilitiesFractional permissions were originally invented
to guarantee determinism of multithreaded programs in ths-p
ence of parallel reads [5]. The idea has been adopted in o@mtu
separation logic [3], and has also been used to staticadigicHe-
terminism of channel communicating processes [21].

22.1 Example

Consider the following example which spawns threads in @,l00
and uses locks and joins to avoid races to the shared reéecetis
bound tox andy.

letx=ref Oinlet y=ref 0 in
let t =newtid in let 1 = newlock in
while * do
spawn(t){let z = ly in lock l;z := z;unlock [};
spawn(t){let z = ly in lock l;x := z;unlock l};
join t; join t;y :=1
Let e be the code above, and lpt = ¢;.e. Consider the state
({t1},0,0,p). Let U1 = 0[p, — 1][py — 1]. Then we have
0, %1 F ({t1},0,0,p), guaranteeing that Figure 2 (b) is race free.
The type derivation uses a type environment of the form

{ t1 — tid(0), x — ref(ps, int),y — ref(py, int)
t — tid(0[py — 0.5]), 1+ lock(0[p. — 1])}

to type check the main body ef Note that the type of indicates
that the spawned thread gets a fraction of the capabilitictess

y in read-only mode, which is combined at joins so that the main
thread can write tg after the threads finish. The typeDbindicates
that the spawned threads get the full (i.e., write) capgiibir x by
acquiringl.

2.3 TheAnalysisAlgorithm

Intuitively, the analysis algorithm is a type inferenceaalthm for
the type system presented in Section 2.2. The analysis ésatep
in two phases. Informally, the first phase infers everytlihgut the
type derivation except for the amount of capabilities. Teeond
phase uses linear programming to check if there exist agrassint
of capabilities that satisfies the capability constraints.

231 Phasel

The first phase is mostly a standard unification-based infexe
generating capability constraints on the side. Figure @vshthe
constraint generation rules. Hetgs are type variableg’s are ab-
stract location variables, ands are capability mapping variables.
These rules are straightforward syntax-directed infexentes for
the type rules from Figure 5.



p fresh

a, ¢ fresh

Aoz Al),p;0 Ajpkn:a,p{a=int}

Apler:ar,p;Cr

A2 e az, p3;Co

Ajpbletz=e1ines: as, p3;CrUC U{a1 =

Apbker:a,or;Ch

A(x), o1 = p2}

A Fea:d ¢ 0o

A, if * thenej else es: a,p2;C1 UC o U{a=a',0 = ¢, 01 > p2,01 > @2}

AprFe:a,p2;C  as,pfresh

a, v, p1 fresh

A,pFwhile *doe: az,¢1;CU{az =int,p2 > 1,0 > 1} A, @b newtid : a, ¢; {a = tid(¢1)}

Ajpolber:ar,p;Ch

Az Fes:az,pa;Co

a, ¢1, s fresh

A, o spawn(er){e2} : a,¢5;C1 UCy U {a =int,a1 = tid(v1), 04 > @1, 95 =

Apbe:a,p2;C  ai,e,pr fresh

w2 — 3}

Apbe:a,p1;C ai,pfresh

A ot joine: ai,¢3;CU{a =tid(p1),a1 =

Apbker:ar,e;Ch

int, o3 = o1+ 2} A,pbrefe:ar,e;CU{an =

A, 01 Fea: o, p2;Ca

ref(o, o)}

a, o fresh

Ajpber i=ep:a,p;C01UCU{a=int,ar =ref(p, ), 1 =

Ajpbe:a,p1;C an,pfresh

@1, 92(0) > 1}

a, o1, ¢ fresh

Aypble:ar,p1;CU{a =ref(g,a1),¢1(0) >0} A, pF newlock: a, ¢’;{a =lock(p1), ¢’ =0 — @1}

Apbke:a,p;C

A, p - freelock e: a',p3;C U {a’ =

Apbke:a,p;C

int, @ = lock(p2), 3 = p1 + w2}

a1, P1, Q3 fresh

A,pFlocke: ar,p3; CU{a =lock(p1),ar =int,p3 = p2 + o1}

AjpkFe:ap;C

a1, Y1, @3 fresh

A, Funlock e : a1, p3; C U {a=lock(p1),ar =int, o3 = p2 — @1}

Figure6. The type inference rules.

The inference judgement), ¢1 F e : a, p2; C, reads “under
the environmentA, e is inferred to have the type:, the pre-
capabilityp1, the post-capability», with the set of constraints'.”

For simplicity, we assume thagt-bound variables are distinct. We
initialize A to map each variable to a fresh type variable. We visit
each AST node (i.e., expression) in a bottom up manner tal buil
the set of constraints.

The resulting set of constraints contains three kinds of con
straints:

(a) Type unification constraints: = o’.

(b) Capability (in)equality constraintgi = ¢’ and¢ > ¢'.

(c) Access constraintg:(p) > 1 andp(e) > 0.

where
o= a | ref(o,a) | int | lock(y) | tid(¢)
dpu=¢|lo+o[o—09

The constraints of the kind (a) can be resolved by the standar

unification algorithm, which may create more constraineskimd

(b). In addition, it creates constraints of the form = o2, which

can also be resolved by the standard unification algorithinis T
leaves us with a set of constraints of the kind (b) and (c).

recursive types so that this phase never fails. We take soch a
approach in the implementation described in Section 3.

232 Phase2

The second phase of the algorithm finds a satisfying soltitiohe
remaining constraints generated in the first phase so teabritt
gram is well-typed. We reduce the problem to linear programym

as follows. Lete be the program being analyzed. Phase 1 returns
pre-capabilityp. such thath, p. e : 7, ¢’; C for somer, ¢’ and

C

For eachp (that is, its equivalence class obtained by the unifica-
tion in phase 1), we instantiate a linear programming prohlsing
the remaining constraints together with the constrair(te) < 1.
More precisely, each constraint mapping variabless instanti-
ated as a linear programming variall€p), and access constraints
©(¢’) > 1 andp(e’) > 0 are removed from the constraints if
o # o. We add constraintg(g) > 0 for eachyp to ensure that
capabilities are non-negative.

To apply linear programming algorithms that can only take
non-strict inequalities such as the one implemented in GLRK
we add a fresh linear programming variaklend replace each
»(0) > 0with ¢(g) > ¢, and set the objective function to beWe

Because we used simple types for the sake of exposition, the ask the linear programming solver to find a solution that mézes

analysis algorithm may fail at this point, for example, witae
program uses integers as locks. We may reject the prograhisat t

e. If the solver returns a solution such that- 0, then we accept
the program as race free on the locatrOtherwise, we report a

point. But it is easy to extend the system with sum types and possible race op.



A write-write race is reported if the linear programming\sol
cannot find any solution. A read-write race is reported iflthear
programming solver finds a solution but= 0.

2.3.3 Analysisof theAlgorithm

We prove the correctness of the analysis algorithm. We @ssytim-
bol n to denote aconstraint solutionwhich is a sorted substitu-
tion mapping type variables to types, abstract locatioratées to
abstract locations, and capability mapping variables fmabdity
mappings. A constraint solution becomes a mapping fegrd\,
and¢ in the obvious way.

DEFINITION 2.7. We writen = C (“ 7 solvesC”) if

e for eacho = o’ € C, n(o) = n(o’).
e for eachg > ¢’ € C, n(¢) > n(¢").
e for eachg = ¢’ € C, n(¢) = n(¢’).
e for eachg (o) > 1 € C,n(¢)(n

o for eachg (o) > 0 € C, n(¢)(n
e for eachg (o) <1 € C,n(¢)(n

(¢)
(¢)
(0)) = 1.
(0)) > 0.
(o) < L.
LEMMA 2.8. Supposel, 1 F e :
n(A),n(er) Fe:nla),n(e2).

a,p2;C andn = C. Then,

Proof: By induction on the type derivation.

THEOREM2.9 (SoundnessSupposel, ¢, e : 7, ¢; C and

nEUleele) <13UC
o
LetI' = n(A). Letzi,...,z, be the free variables ir. Let
v1,...,0, be such thatl' + v; : T'(z;) for eachv;. Let,

k, 6 be such that U domx) U dom@) UZ D {v1,...,vn},
I' + 0, andk(l) = L for eachl € dom(k). Lett ¢ .. Then,
({t} U, k,0, t.elvr/x1] ... [vn/zs]) is race free.

Proof: Straightforward from Lemma 2.8 and Theorem 216.

We argue the theoretical computational complexity of thal-an
ysis algorithm. The instance of linear programming probliem

phase 2 can be solved in time polynomial in the size of the con-

straints by algorithms such as interior points methods rédfoee,
the complexity of the algorithm is polynomial in the time gka
1 takes to generate the capability constraints, which igroshial
in the size of the program for our simple language. Therefibie
complexity of the analysis algorithm is polynomial in theesiof
the program.

In general, the complexity will increase if we include mooee
plex programming constructs such as data structures ahdrig-
der functions if we stick with the simple types. But this cam b
avoided by incorporating recursive types, as is done in fxdRlace
implementation.

3. LP-Race

We have implemented a prototype of the analysis algorithRy, L

311 AliasAnalysis

C programs use pointers and arrays extensively. To geneisn-
sible set of abstract locations, LP-Race performs pomemalysis
and use the computed may-alias sets as abstract locatiomthe~
prototype implementation, we choose one-level-flow ansfgs 7]
(with optimistic field sensitivitg), which is fast and known to pro-
duce good alias sets in practice. In principle, any may alieysis
can be used to obtain abstract locations.

As remarked earlier, LP-Race uses sum types and recursive
types so that the first phase of the analysis never fails. alluw/s,
among other things, LP-Race to report all single-threadgma=
grams to be race free.

3.1.2 Generic Control Flow

C contains unstructured control flow such as gotos and br&aks
handle generic control flow, LP-Race uses CIL to generategao
flow graph for each function, and associate a fresh capalfdit
each node in the control flow graph. Then, for each successla n
b of a nodea, LP-Race adds the constraipt > ¢, whereyp, is
the capability associated withand, is the capability associated
with b.

3.1.3 Functions

Because threads are typically created using function @@nhan-
dling first class functions is crucial for analyzing multiaded C
programs. We extend the type system with function types ef th
form

| (qlp’fﬁv 7_:) - (q/poshTret)

where 7 are the arguments types (the notati@rdenotes a se-
qguence), and.; is the return type. Intuitively¥,,. is the capa-
bility that the caller of the function must be holding, awg,; is
the capability that can be returned to the caller when thetion
returns. ¥, is taken from the entry node of the function body,
and ¥, is the solution for the capability variable,.; such that
for each return node in the function, LP-Race adds the constraint
wa > @ret Wherep, is the capability associated with

LP-Race type check function calls by the following rule.

F, Uhke: (\I’p7'€77-17 cee 77'n) - (\I’post77ret)7 21
Vi € {1, e ,n}.(F,\I/i Fei: Ti,q/pd)
\II7L+1 = \Ilpre + \Ilkccp

T, 0k ees,...

Here, VU, 41 is the capability held by the caller just before entering
the function. Note that only a part &1, that is¥,,., needs
to be given to the function. The remaining capabilitigs,., is
kept by the caller and combined with the return capabilitythef
function. This capability “flow around” technique providesntext
sensitivity as each call site can use a differdnt., to avoid
conflating capabilities.

The flow around technique is inspired by similar ideas used in
Cqual [12] and Locksmith [20]. However, unlike Cqual or Leck
smith, LP-Race does not require an effect analysis to daterm
what to give to the function and what to keep, because the flow

T 1= .

7€7L) * Tret, \I’post + \I’kccp

CIL [19] as a front-end to parse C files and handles the full-se SO that linear programming automatically discovers whafldw

of C.

3.1 Handling C Features

LP-Race extends the analysis framework to handle C feahaes
covered in the formalism detailed in Section 2. This inchisieucts
and unions, functions, and synchronization methods sustggal-
ing and semaphores. This section highlights some of thebleota
extensions.

around. Also, itis more general because it allows fractiansount
of capabilities to be flown around.

Polymorphic Function Signatures A polymorphic (i.e., a context
sensitive) alias analysis [8, 7, 23, 14] can be used to g@nera
polymorphic types for functions. That is, we can quantifgdtion

2The fields of a struct/union are allowed to have differenesypnd abstract
locations.



types by abstract locations so that functions are givenstygiéhe
form

Vﬁ.(\llprw 7?) - (\I’post7 Tret)

This allows us to type check situations requiring pararogdaly-
morphism, as in the code below.

int c, d;
pthread_t tidl, tid2;

void *f(void *p) {
*p = 1;
}
void main(void) {
pthread_create(&tidl, NULL, &f, &c);
pthread_create(&tid2, NULL, &f, &d4);
}
Currently, LP-Race uses monomorphic one-level-flow arskysd
so polymorphic function signatures cannot be obtained. &ffed
extending LP-Race with polymorphic function signaturesticure
work.

3.1.4 Synchronization Primitives

As remarked earlier, our analysis approach is not limitelb¢&s.
Here, we discuss other kinds of synchronization primitiz€s
Race handles.

Signaling Perhaps the simplest form of synchronization is to
send a signal from one thread to another thread waiting figyreak
For example, POSIX threads programs use conditional Vagab
for signaling. LP-Race gives signal primitives like a cdiatial
variable the type of the forrsig(¥) so that a send of a signal is
typed as follows.

I, ¥ Fe:sig¥:), ¥

I',UIF sende:int, Uy — ¥y
And a wait on a signal is typed as follows.
L, Fe:sigP:), ¥y

T, Uk wait e:int, Uy + Uy

Semaphores Semaphores are straightforward to handle in our
framework. A semaphore is given the type of the fasem{¥).
A post of a semaphore is typed as follows.
DU tFe:semPy), U,
T''UEVe:int, Uy — Uy
A wait on a semaphore is typed as follows.
D,UFe:sem¥y), Uy
T'''UFPe:int, Uy + Uy
Unlike a lock release, a post of a semaphore is not idempotent
For example, a race must be reported for the program in Figure
It is not difficult to prove that type system is sound for seh@ps
with their usual semantics of a post incrementing a courrdraa

wait waiting for a counter to be positive and then decrenmgntie
counter® We omit the details for space.

Read-Write Locks LP-Race models read-write locks when the
upper bound on the number of live threads are known. Rea@-wri
locks are given types of the fornwlock(¥,., ¥,,). Figure 8 show

3This actually implies that the type rule fanlock is somewhat conser-
vative for double unlocking. However, unlocking an alreaniocked lock
is often considered a bug and has undefined behavior in maegdHi-
brary specifications. Issues on recursive locking and timgcdis discussed
further in Section 5.

int c;
pthread_t tidl, tid2;
sem_t sem;

void *f(void *) {
sem_wait (&sem) ;
c=1;

}

void main(void) {
sem_init (&sem, 0, 0);
pthread_create(&tidl, NULL, &f, &c);
pthread_create(&tid2, NULL, &f, &c);
sem_post (&sem) ;
sem_post (&sem) ;

Figure7. Double semaphore post.

W, < W,/N
I', ¥ | newrwlock : rwlock(¥,, ¥,,), ¥ — ¥,

I,9Fe:rwlock(V,, U,,), ¥
I', U+ rdlocke:int,¥; + W,

T, Fe:rwlock(V,, U,,), Uy
', U I rdunlock e : int, ¥y — U,

I, 0 Fe:rwlock(V,, U,,), ¥
I', U wrlock e:int, ¥y + W,

T, Fe:rwlock(V,, U,,), Uy
', U I wrunlock e : int, ¥y — U,

Figure 8. Read-write lock type rules.

the type rules for read-write lock acquires and release&hdre
much like those of regular locks, except thai, is used in write
mode andV .. is used in read-only mode.

Here, newrwlock creates a new read write lockdlock e
(rdunlock e) acquires (releases) the read-write lackn read-
only mode, andirlock e (wrunlock e) acquires (releases) the
read-write locke in write mode.

In the rule fomewrwlock, N is the upper bound on the number
of threads. For instance, if a read-write lotks used to guard
an abstract locatiop, then the type of would be of the form
rwlock(¥,,, ¥,.) such that¥,(p) > 1. Obtaining a read lock
grants¥,(p) < U, (p)/N amount of capability, which could be
less thanl, but is enough to do a read (i.e., greater tanlt is
easy to prove that this scheme is sound when the program spawn
at mostN threads.

3.1.5 Local Accesses

Consider the program shown in Figure 9. The memory region
allocated in the functiort is used only inside the function (which
include threads spawned by the function). To check that bzt
uses of memory regions are race free, LP-Race performs apessc
analysis to determine if an abstract location escapesghrglobals

or the function arguments or returns. Suppesgoes not escape.
Then, LP-Race adds the constraint..(¢) < 1 wherep,,. is the
capability at the entry of the function, and removes the tairgs



pthread_t tidl, tid2;
pthread_mutex_t lock;

void *g(void *q) {
pthread_mutex_lock(&lock) ;
*q = *q + 1;
pthread_mutex_unlock(&lock) ;

}

void *f(void *) {
int * p = malloc(sizeof(int));
*p = 1;
pthread_mutex_init(&lock, NULL);
pthread_create(&tidl, NULL, &g, p);
pthread_create(&tid2, NULL, &g, p);

}

void main(void) {
pthread_create(&tidl, NULL, &f, NULL);
pthread_create(&tid2, NULL, &f, NULL);

}
Figure9. Local access example.
App | Size | LP Instances| Warnings | Time
aget| 2.2 40 15 4
ctrace| 2.2 24 12 5
smtprc| 9.0 85 42 145
retawq | 52.3 605 14 | 6855

Tablel. Experiment results.

of the form p(0) > wpre(0). This allows functions to use the

locally allocated locations in a race free manner.

3.1.6 Subtyping

LP-Race takes advantage of the one-level-flow points-tdysisa
framework to do one level of subtyping (types are unified unde
pointers).

We show the subtyping rules for lock types. LP-Race extends
the lock type tdock(¥;,,, ¥o.:) such thatl;, is used at CK and
W, is used aNEWL andULCK. We assert,.; > ¥;,, and
use the following subtyping rule.

\Ilin 2 \I’;n \Ilout 2 \I’;ut
lock(W s, Wout) < lock(W;,, Uh,:)
The idea is inspired by the read-type write-type separation

subtyping reference cells. We type other synchronizationifives
similarly. This has the effect of reducing false-aliasitigocks.

3.2 Experiments

LP-Race is implemented in OCaml. LP-Race uses CIL 1.3.6 [19]
as the frontend parser, and GLPK 4.2.1 [1] as the backendrline
programming solver. In general, any tool capable of solving
system of rational linear inequalities can be used as thkeinac
The code was compiled using OCaml 3.08 and gcc 3.4.4. The
experiments were run on a PC with a Intel T7200 2GHZ processor
with 2GB of RAM, running Cygwin inside Windows XP.

We ran LP-Race on several POSIX threads applications. We
chose three benchmarks from the Locksmith paper [20], aget,
ctrace and smtprc, mainly to check that the results from laeeR
agree with their findings, and also tried a larger applicatietawq,

a multithreaded webserver, to see how LP-Race scales terlarg
code base. Table 1 summarizes the results. The size coluthe is
number of kilo lines of code after CIL merges the preprocgsse

application files and filters out duplicate or unused debfingi The
time column is in seconds. The warnings column shows the Bumb
of possible races reported.

It is worth noting that the warning counts are sensitive ® th
underlying alias analysis. LP-Race currently distingasshossible
races by alias sets only (after removing duplicates), fhezefor
instance, if we had used a very coarse alias analysis thaheet
a single alias set containing all locations, then the amalysuld
always report at most one warning. Also, with this metho@énev
there are multiple races on the same alias set, only one neaisi
reported. Section 5 discusses issues regarding errottirggor

We reviewed the error reports. For aget, LP-Race was abke-to d
tect the races reported in [20]. For ctrace, LP-Race deteetsvo
races reported in [20]. In addition, it reports ten falseitpeess. Ex-
amining these false positives, as pointed out in [20], soppeared
to be due to semaphores. While LP-Race can handle standard
semaphore uses, ctrace contains a manual read-write seraaph
implemented with a counter, which LP-Race is not able to leand
Replacing this manual read-write semaphore with LP-Raead-
write lock eliminated four false positives. The other fagesitives
are related to the unused lock problem discussed in Sectiancb
accesses to a global array indexed by thread identifiers|sbeb-
served that the handling of join was necessary for elinmgatine
false positive.

For smtprc, many of the warnings are false read-write races
reported due to loops spawning unbounded number of threfds (
Section 5). Manually unrolling the loops twice eliminatesfalse
positives. The other false positives are due to accessegltbal
data structure indexed by thread identifiers. We noticetstimgprc
dangerously releases a lock in a loop, which, according ¢o th
POSIX threads specification, has undefined behavior. Suzh lo
releases could lead to a race if a thread can release a |dahtliea
threads are holding (though this is implementation depefdeP-
Race correctly reports warnings for such situations thaokie
conservative handling of recursive unlocks. For retawgnynaf
the warnings appear to be false positives caused by fabssradi of
locations returned by memory allocation wrapper functidbee
warning appears to be a race, though seemingly benign.

3.21 Discussion

The backend of LP-Race, which dominates the running timeamis
barrassingly parallel. The backend solves one linear progring
instance per an alias set containing a possibly thread dhaca-
tion. The third column of Table 1 shows the number of instance
created, after some filtering to remove redundant instari€ash
linear programming instance is nearly the same size for dnges
code base and can be solved independently of the otherefoher
by solving each instance in parallel, in theory, we shouldrngar

N times speedup with N parallel processors for applicatisits
more than N alias sets.

Also, because the running times are dominated by the backend
the choice of the linear programming solver may affect théope
mance. We chose GLPK mostly out of convenieficbut GLPK
is by no means the fastest linear programming solver. Rgnnin
times often differ by several orders of magnitude acrostemint
solvers [16]. We leave experimenting with other linear pamg-
ming solvers for future work.

4. Related Work

Many static race analyses focus on lexically-scoped larkiat-
terns such as theynchronized blocks in Java. The essence of
lexically-scoped locking patterns can be cleanly captumeda

4We based the implementation on a partial OCaml interfac&fd?K [15].



lockset-based analysis based on the classical type antt sffe-

tem. Early systems [9, 10, 13, 4] required the users to suaply
notations, whereas more recent work [2, 11, 18, 17] infekdets

automatically by utilizing powerful reasoning techniquash as
binary decision diagrams and SAT solvers.

A lockset-based analysis for non-lexically scoped locksaisl
to require “flow-sensitivity” to infer locks held at each gram
point [20, 22], and considered more difficult than that foddally
scoped locks. Like lockset-based analyses for scoped,|tioise
analyses are usually limited to locks and lock-like synairation
patterns. An issue with handling non-lock synchronizapatterns
like semaphores and signals is that it is ok for another thtea
“release” a semaphore that another thread has “acquirelile w
such a behavior is uncommon for locks.

Also, unlike that for scoped locks that has a straightfodvar
formalization as a type and effect system, a lockset-basalysis
for non-scoped locks are rarely formalized and proven s8(ifds
paper gives a simple formalization of non-scoped locks @tas
other synchronization patterns) in terms of capabilities.

Locksmith [20] is a lockset-based analysis that introdubes
notion of correlation analysisto reason about non-scoped locks
used in a context sensitive manner. Relay [22] is a lockaseth
analysis for non-scoped locks that has been applied to a targdr
code base (millions of lines) than the applications we arely
with LP-Race. To scale to such a large code base, they pamalle
the analysis to utilize a cluster of high performance magin
As remarked in Section 3.2, LP-Race should also benefit from
parallel computation. We leave implementing parallelizPdRace
for future work.

Both Relay and Locksmith employ a number of techniques to
trade unlikely sources of unsoundness for precision ordspech
as optimistic thread-sharedness assumptions and usinges ty
refine aliasing. Such techniques are important for anajylarge-
scale real-world programs. Many of such techniques affielgtthe
“may alias” part of the analysis, and therefore, they shaldd be
adaptable to our framework.

The technique to reduce a static analysis problem to linear p
gramming may be of independent interest. The approach was in
spired by the idea of fractional permissions/capabiljt@ginally
proposed by Boyland [5] as a way to allow parallel reads while
guaranteeing determinism. The idea has been used to relagon a
concurrent reads in separation logic [3], and also to chetkrd
minism of channel communicating processes [21]. This paper
the first application of the fractional permissions/cajaés idea
to real world programs.

5. Open Issues

We identify the limitations of the current analysis systeWie
address each issue and describe possible remedies.

The analysis does not handle recursive locks because inassu
that a thread blocks when trying to acquire a lock that isaalye
held, regardless of who holds the lock. Therefore. If thiadio
tion is violated, it is easy to construct a program that gaimsn-
valid amount of capabilities (i.e., greater thinby acquiring the
same lock multiple times. Effect-based approaches [9, 2041
can naturally express Java-style lexically-scoped reailscks.
Effectively handling non-scoped recursive locks is an ojzsne
[22].

One limitation that seems unique to our analysis (and plyssib
to others based on the permissions/capabilities idea)rsaehen

5In fact, many threads libraries, including POSIX threads)demns such
idioms as erroneous.

6The Locksmith paper [20] formalizes by assuming that eadese is
annotated with the held locks.

a program spawns an unbounded number of live threads in a loop
This implies that either the created threads start with pabaity,

or the loop head has an infinite amount of capabilities (wlisch
invalid for any program locations that are reachable). ctice,

this makes the analysis report some read-only access asihlpos
read-write race. For example, a false race is detected jriggam
below.

let x=ref 0in
while * do
spawn(newtid){ !x }

Currently, we unroll thread allocating loops manually wHeP-
Race reports a false read-write race.

A related issue is locks created early. The key argument used
to prove soundness is to interpret locks and other lockgitm-
itives to be “storing” the capabilities in their unlockedhtst (cf.
Definition 2.3). Therefore, once a lock is created, the ciifiab
stored in the lock can prevent a thread from accessing the loc
tions guarded by the lock even when there is no contentioten t
locations. In particular, this makes some thread-locaésees un-
typable, as shown below.

let x=ref 0 in

let 1 =newlock in

x:=1;

spawn(newtid){ lock 1;x := O;unlock 1}
spawn(newtid){ lock 1;x := O;unlock 1}

Here, 1 must hold the full (i.e.,1) capability forx so that the
spawned threads can write 0 But this implies thatk := 1 is
not typable becauskis at an unlocked state at that point. A similar
issue appears when accesses are made when the lock is no longe
used (but before the lock is explicitly destroyed). Curiente fix
such situations by manually moving lock allocation/d@etpoints

or by inserting a lock acquire/release pair around the umtpeh
access. A more principled remedy is to infer program poings t
can acquire a lock without contention, and allow such pnogra
points to use the capabilities stored in the lock withouualty
acquiring the lock.

Another issue with our approach is error reporting. Because
the analysis does not compute locksets, LP-Race does refagiv
feedback containing held locks at each program locationnwhe
detects a possible race. This can make analyzing falseivessit
somewhat inconvenient. Currently, LP-Race reports thgnara
location and the kind (i.e., a read or a write) of accessesenad
the abstract location that failed the check, and whetheettra is
a possible write-write race or is a read-write race. How taoctsely
represent theeasonfor the race (or a false positive) is an important
issue in race analysis. One approach that may work well with
LP-Race is an interactive debugging interface in which theru
specifies a subset of reported accesses as race free so tRaickeP
re-solves the linear programing instance for that locatiith the
reduced accesses. With such a strategy, we can avoid rérguthe
entire analysis from scratch.

6. Conclusions

We have presented a new static analysis for race freedomethat
duces the problem to linear programming. The analysis igqui
different from more traditional analyses and does not megqtom-
putation of locksets nor lock linearity/must-aliasneske lanaly-
sis has a straightforward formalization as a permissiapsloilities
system, and enjoys benefits such as being able to handleegyvari
of synchronization primitives. The preliminary experirhesports
encouraging results analyzing small to medium size mudtitied

C programs.
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