
Efficient Matching of Some Fundamental
Regular Expressions with Backreferences
Taisei Nogami #

Waseda University, Tokyo, Japan

Tachio Terauchi #Ñ

Waseda University, Tokyo, Japan

Abstract
Regular expression matching is of practical importance due to its widespread use in real-world appli-
cations. In practical use, regular expressions are often used with real-world extensions. Accordingly,
the matching problem of regular expressions with real-world extensions has been actively studied in
recent years, yielding steady progress. However, backreference, a popular extension supported by
most modern programming languages such as Java, Python, JavaScript and others in their standard
libraries for string processing, is an exception to this positive trend. In fact, it is known that the
matching problem of regular expressions with backreferences (rewbs) is theoretically hard and the
existence of an asymptotically fast matching algorithm for arbitrary rewbs seems unlikely. Even
among currently known partial solutions, the balance between efficiency and generality remains
unsatisfactory. To bridge this gap, we present an efficient matching algorithm for rewbs of the form
e0(e)1e1\1e2 where e0, e, e1, e2 are pure regular expressions, which are fundamental and frequently
used in practical applications. It runs in quadratic time with respect to the input string length,
substantially improving the best-known cubic time complexity for these rewbs. Our algorithm com-
bines ideas from both stringology and automata theory in a novel way. We leverage two techniques
from automata theory, injection and summarization, to simultaneously examine matches whose
backreferenced substrings are either a fixed right-maximal repeat or its extendable prefixes, which
are concepts from stringology. By further utilizing a subtle property of extendable prefixes, our
algorithm correctly decides the matching problem while achieving the quadratic-time complexity.

2012 ACM Subject Classification Theory of computation → Regular languages; Theory of compu-
tation → Pattern matching

Keywords and phrases Regular expressions, Backreferences, Regex matching, NFA simulation, Suffix
arrays, Right-maximal repeats

Digital Object Identifier 10.4230/LIPIcs.MFCS.2025.91

Supplementary Material Software (Analysis Script): https://github.com/nogamita/MFCS2025 [3]

Funding This work was supported by JSPS KAKENHI Grant Numbers JP25KJ2137, JP23K24826,
and JP20K20625.

1 Introduction

A regular expression is a convenient way to specify a language (i.e., a set of strings) using
concatenation (·), disjunction (|) and iteration (∗). The regular expression matching problem
(also known as regular expression membership testing) asks whether a given string belongs to
the language of a given regular expression. This problem is of practical importance due to
its widespread use in real-world applications, particularly in format validation and pattern
searching. In 1968, Thompson presented a solution to this problem that runs in O(nm)
time where n denotes the length of the input string and m the length of the input regular
expression [48]. We refer to his method, which constructs a nondeterministic finite automaton
(NFA) and simulates it, as NFA simulation.

© Taisei Nogami and Tachio Terauchi;
licensed under Creative Commons License CC-BY 4.0

50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025).
Editors: Paweł Gawrychowski, Filip Mazowiecki, and Michał Skrzypczak; Article No. 91; pp. 91:1–91:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sora410@fuji.waseda.jp
https://orcid.org/0009-0002-2820-8615
mailto:terauchi@waseda.jp
https://www.f.waseda.jp/terauchi/
https://orcid.org/0000-0001-5305-4916
https://doi.org/10.4230/LIPIcs.MFCS.2025.91
https://github.com/nogamita/MFCS2025
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

91:2 Efficient Matching of Some Fundamental Regular Expressions with Backreferences

The matching problem of real-world regular expressions becomes increasingly complex due
to its practical extensions such as lookarounds and backreferences. Unfortunately, reducing
the matching of real-world regular expressions to that of pure ones is either inefficient
or impossible. In fact, although adding positive lookaheads (a type of lookaround) does
not increase the expressive power of regular expressions [33, 8], the corresponding NFAs
can inevitably become enormous [32]. Worse still, adding backreferences makes regular
expressions strictly more expressive, meaning that an equivalent NFA may not even exist.1

Nevertheless, most modern programming languages, such as Java, Python, JavaScript and
more, support lookarounds and backreferences in their standard libraries for string processing.
The most widely used implementation for the real-world regular expression matching is
backtracking [46], an algorithm that is easy to implement and extend. On the other hand, the
backtracking implementation suffers from a major drawback in that it takes exponential time
in the worst case with respect to the input string length. This exponential-time behavior
poses the risk of ReDoS (regular expression denial of service), a type of DoS attack that
exploits heavy regular expression matching to cause service downtime, making it a critical
security issue (refer to Davis et al. [15] for details on its history and case studies). In response,
RE2, a regular expression engine developed by Google, has deferred supporting lookarounds
and backreferences, thereby ensuring O(nm) time complexity using NFA simulation.2

Regarding lookarounds, several recent papers have proposed groundbreaking O(nm)-time
solutions to the matching problem of regular expressions with lookarounds [31, 22, 6], yet
regarding backreferences, the outlook is bleak. The matching problem of regular expressions
with backreferences (rewbs for short) is well known for its theoretical difficulties. Aho showed
that the rewb matching problem is NP-complete [2]. Moreover, rewbs can be considered a
generalization of Angluin’s pattern languages (also known as patterns with variables) [4]; even
when restricted to this, its matching problem is NP-complete with respect to the lengths
of both a given string and a given pattern [4, 17, 42], and its NP-hardness [19] as well as
W[1]-hardness [20] are known for certain fixed parameter settings. The best-known matching
algorithm for rewbs with at most k capturing groups runs in O(n2k+2m) time [43, 44] (With
a slight modification, the time complexity can be reduced in O(n2k+1m) time; see Section 4).

Therefore, the existence of an efficient worst-case time complexity algorithm that works
for any rewb seems unlikely, necessitating researchers to explore efficient algorithms that
work for some subset of rewbs [41, 44, 21]. Nevertheless, all existing solutions either have
high worst-case time complexity or impose non-trivial constraints on the input rewbs, and
finding a good balance between efficiency and generality remains an open issue.

To bridge this gap, we present an efficient matching algorithm for rewbs of the form
e0(e)1e1\1e2, where e0, e, e1, e2 are pure regular expressions, which are fundamental and
frequently encountered in practical applications. While the best-known algorithm for these
rewbs is the one stated above and it takes O(n4m) (or O(n3m)) time because k = 1 for these
rewbs, our algorithm runs in O(n2m2) time, improving the best-known time complexity for
these rewbs with respect to the input string length n from cubic to quadratic. The key appeal
of this improvement lies in the replacement of the input string length n with the expression
length m. Because n is typically much larger than m, this improvement is considerable.

These rewbs are of both practical and theoretical interest. From a practical perspective,
these rewbs account for a large proportion of the actual usage of backreferences. In fact, we
have confirmed that, among the dataset collected in a large-scale empirical study conducted

1 The rewb ((a|b)∗)1\1 specifies {ww | w ∈ {a, b}∗}, which is non-context-free (and therefore non-regular).
2 The development team declares, “Safety is RE2’s raison d’être.” [49]

T. Nogami and T. Terauchi 91:3

by Davis et al. [15], which consists of real-world regular expressions used in npm and PyPI
projects, approximately 57% (1,659/2,909) of the non-pure rewbs3 are of this form [3].

Additionally, the matching problem of rewbs of this form is a natural generalization of a
well-studied foundational problem, making it theoretically interesting. A square (also known
as tandem repeat) is a string αα formed by juxtaposing the same string α. The problem
of deciding whether a given string contains a square is of interest in stringology, and has
been well studied [30, 13]. The rewb matching considered in this paper can be viewed as a
generalization of the problem by regular expressions.4

We now provide an overview of our new algorithm. A novel aspect of the algorithm is that,
unlike previous algorithms for rewb matching or square finding, it combines ideas from both
stringology and automata theory. Our algorithm utilizes the suffix array of the input string to
efficiently enumerate candidates for backreferenced substrings (i.e., the contents of \1). Once
a candidate α is fixed, the matches whose backreferenced substring is α can be examined in
O(nm) time in almost the same way as NFA simulation. Because the number of candidate
substrings is Θ(n2), this gives an O(n3m)-time algorithm (see Remark 11 for details). Next,
we improve this baseline algorithm by extending the NFA simulation to simultaneously
examine all matches whose backreferenced substrings are either a right-maximal repeat or its
extendable prefixes, instead of examining each candidate individually. Because the new NFA
simulation requires O(m2) time at each step and the number of right-maximal repeats is at
most n− 1, our algorithm runs in O(n2m2) time.

A key challenge is how to do all the examinations within time linear in n for each fixed
right-maximal repeat α. To address this, we incorporate two techniques from automata
theory, injection and summarization. Each of these techniques is fairly standard on its own
(see Section 4 for their applications in prior work), but the idea of combining them is, to our
knowledge, novel. Additionally, we leverage a subtle property of α-extendable prefixes to do
the examinations correctly within time linear in n even when occurrences of α may overlap
(see Section 3.2).

The rest of the paper is organized as follows. Section 2 defines the key concepts in this
paper, namely NFA simulation and right-maximal repeats. Section 3 presents our algorithm,
which is the main contribution of this paper. Section 4 discusses related work and Section 5
presents the conclusion and future work. Omitted proofs are available in the appendix.

2 Preliminaries

Let Σ be a set called an alphabet, whose elements are called characters. A string w is a finite
sequence a1 · · · an of characters a1, . . . , an, and we write |w| for the number n of characters
in the sequence. The empty string is written as ε. For integers i, j ≥ 0, we write [i, j] for the
set of integers between i and j. For i, j ∈ [1, n], we write w[i..j] for the substring ai · · · aj .
In particular, (1) w[i] := w[i..i] = ai is called the character at position i, (2) w[..i] := w[1..i]
is called the prefix up to position i and (3) w[i..] := w[i..n] is called the suffix from position
i. We regard w[i + 1..i] as ε. A regular expression e and its language denoted by L(e) are
defined in the standard way.

First, we define the matching problem for rewbs of the form mentioned earlier.

3 Non-pure rewbs are rewbs that use backreferences. Note that rewbs, in general, also include ones that
do not use backreferences (i.e., pure regular expressions).

4 The problem is an instance of our rewb matching problem where e0, e, e2 = Σ∗ and e1 = ε.

MFCS 2025

91:4 Efficient Matching of Some Fundamental Regular Expressions with Backreferences

▶ Definition 1. Given regular expressions e0, e, e1, e2, the language of rewb r = e0(e)1e1\1e2,
denoted by L(r), is {w0αw1αw2 | wi ∈ L(ei)(i = 0, 1, 2), α ∈ L(e)}.

A regular expression e matches a string w if w ∈ L(e). The matching problem for regular
expressions is defined to be the problem of deciding whether a given regular expression
matches a given string, and similarly for rewbs (of the form considered in this paper).
▶ Remark 2. Note that in full, rewbs may use a capturing group (r)i to assign a label i

to a string that the captured subexpression r matches and a reference \i to denote the
expression that matches only the string labeled i. Therefore, rewbs are capable of more
versatile expressions, such as using reference more than once (e.g., (a∗)1\1\1) or using
multiple capturing groups (e.g., (a∗)1(b∗)2\1\2)). For the full syntax and semantics of rewbs,
refer to [21]. We refer to [7, 36, 38] for studies on their expressive power.

Next, we review a classical solution of the regular expression matching.

▶ Definition 3. A nondeterministic finite automaton (NFA) N is a tuple (Q, δ, q0, F) where
Q is a finite set of states, δ : Q × (Σ ∪ {ε}) → P(Q) is a transition relation, q0 ∈ Q is an
initial state, F ⊆ Q is a set of accept states.

The transitive closure of a transition relation δ with the second argument fixed at ε is called
ε-closure operator and written as clε. Further, we lift clε : Q→ P(Q) to P(Q)→ P(Q) by
taking unions, i.e., clε(S) :=

⋃
q∈S clε(q). For a state q and a character a, we define ∆(q, a)

as clε(δ(q, a)), which informally consists of states reachable by repeating ε-moves from states
that are reachable from q by a. As before, we extend ∆ by setting ∆(S, a) :=

⋃
q∈S ∆(q, a).

Also, for a string w, we define ∆(S, w) as ∆(S, ε) := S and ∆(S, wa) := ∆(∆(S, w), a). Thus,
the language L(N) of an NFA N is the set of strings w such that ∆(clε(q0), w) ∩ F ̸= ∅.

The NFA simulation of N on a string w of length n is the following procedure for calcu-
lating ∆(clε(q0), w) [48]. First, S(0) := clε(q0) is calculated, and then S(i) := ∆(S(i−1), w[i]),
called the simulation set at position i, is sequentially computed from S(i−1) for each i ∈ [1, n].
We have w ∈ L(N) ⇐⇒ S(n) ∩ F ̸= ∅.

This gives a solution to the regular expression matching in O(nm) time and O(m) space
where n is the length of the input string w and m that of the input regular expression e.
First, convert e to an equivalent NFA Ne whose number of states and transitions are both
O(m) using the standard construction, then run the NFA simulation of Ne on w. Finally,
check whether the last simulation set S(n) contains any accept state of Ne. Each step of the
NFA simulation can be done in O(m) time using breadth-first search. Also, the procedure
can be implemented in O(m) space by reusing the same memory for each S(i).
▶ Remark 4. We call acceptance testing the disjointness testing of a simulation set S and a
set F of accept states, as performed above. An acceptance test succeeds if S ∩ F ̸= ∅.

Acceptance testing of an intermediate simulation set is also meaningful. We can check
whether e matches each prefix w[..i] with the same asymptotic complexity by testing at each
position i. The same can be done for the suffixes by reversing e and w.

Next, we review right-maximal repeats and extendable prefixes. Let w be a string. A
nonempty string α occurs at position i in w if w[i..i + |α| − 1] = α. Two distinct occurrences
of α at positions i < j overlap if j < i + |α|. A repeat of w is a nonempty string that occurs
in w more than once. A repeat α is called right-maximal if α occurs at two distinct positions
i, j such that the right-adjacent characters are different (i.e., w[i + |α|] ̸= w[j + |α|]). In the
special case when α occurs at the right end of w, we consider it to have a right-adjacent
character distinct from all other characters when defining right-maximality. For example, the
right-maximal repeats of mississimiss are i, iss, issi, miss, s, si, ss and ssi (miss,

T. Nogami and T. Terauchi 91:5

iss, ss are due to the special treatment).5 In general, the number of repeats of a string of
length n is Θ(n2), while that of right-maximal repeats is at most n− 1 [24].

For any non-right-maximal repeat α, all the right-adjacent positions of the occurrences
of α have the same character. By repeatedly extending α with this, we will obtain the
right-maximal repeat, denoted by −→α . This notation −→α follows that of [26, 47, 35]. We define
−→α := α for a right-maximal repeat α. A prefix β of α such that

−→
β = α is called α-extendable

prefix of α. Note that α itself is α-extendable. Two distinct occurrences of an α-extendable
prefix β are α-separable in w if the two α’s extended from the β’s have no overlap.

Finally, we mention the enumeration subroutine used in our algorithm. Abouelhoda
et al. presented an O(n)-time enumeration algorithm for right-maximal repeats [1]. By
slightly modifying this, we obtain an O(n2)-time algorithm EnumRM that enumerates each
right-maximal repeat α with the sorted array Idxα of all starting positions of the occurrences
of α (see Appendix A for details). We call Idxα the occurrence array of α in w.

3 Efficient Matching

In this section, we show an efficient matching algorithm for rewbs of the form e0(e)1e1\1e2,
which is the main contribution of this paper.

▶ Theorem 5. The matching problem for rewbs of the form e0(e)1e1\1e2, where e0, e, e1, e2
are regular expressions, can be solved in O(n2m2) time and O(n + m2) space. Here, n

denotes the length of the input string and m that of the input rewb. More precisely, let
me0 , me, me1 , me2 denote the length of e0, e, e1, e2 respectively, and µright the number of right-
maximal repeats of the input string, which is at most n−1. Then, the problem can be solved in
O(n2 + n(me0 + me2) + µrightn(me + m2

e1
)) time and O(n + max{me0 , me, me2 , m2

e1
}) space.

Let r be a rewb e0(e)1e1\1e2 and w be a string. The overview of our matching algorithm
for r and w is as follows. We assume without loss of generality that e does not match ε

because we can check if e matches ε and e0e1e2 matches w in O(nm) time by ordinary NFA
simulation. We show an O(n(me + m2

e1
))-time and O(n + me + m2

e1
)-space subprocedure

Match(α, Idxα) (Match(α) for short) that takes a right-maximal repeat α and its occurrence
array Idxα, and simultaneously examines all matches whose backreferenced substrings (i.e.,
the contents of \1) are α-extendable prefixes of α. Before defining Match, we state the
property that characterizes its correctness:

▶ Lemma 6 (Correctness of Match). Let α be a right-maximal repeat of w. There exists a
(not necessarily α-extendable) prefix β of α such that e matches β and e0βe1βe2 matches w if
Match(α) returns true. Conversely, Match(α) returns true if there exists an α-extendable
prefix β of α such that e matches β and e0βe1βe2 matches w.

▶ Remark 7. Note that, interestingly, the correctness is incomplete on its own. That is,
when there is a prefix β of α such that a match with β as the backreferenced substring
exists, Match(α) is guaranteed to return true if β is α-extendable, but it can return false
if β is not α-extendable. Still, the correctness of the overall algorithm Main described
below holds because it runs Match on every right-maximal repeat, and a match with a
non-α-extendable prefix β is guaranteed to be reported by another execution of Match
(namely, by Match(

−→
β)). Formally, see the proof of Theorem 5 described below.

5 This shows that, contrary to what the word suggests, a right-maximal repeat may contain another
right-maximal repeat. In fact, the repeat iss and its proper substrings i, s and ss are all right-maximal.

MFCS 2025

91:6 Efficient Matching of Some Fundamental Regular Expressions with Backreferences

Given this, the overall matching algorithm Main is constructed as follows. It first
constructs an NFA Ne1 equivalent to the middle subexpression e1 and two Boolean arrays Pre
and Suf, which are necessary for Match. A Boolean array Pre (resp. Suf) is the array which
stores whether each prefix (resp. suffix) of w is matched by e0 (resp. e2). More precisely,
Pre and Suf are the arrays such that Pre[i] = true ⇐⇒ w[..i] ∈ L(e0) for i ∈ [0, n] and
Suf[j] = true ⇐⇒ w[j..] ∈ L(e2) for j ∈ [1, n + 1]. Note that we can construct these
arrays in O(n(me0 + me2)) time and O(n + max{me0 , me2}) space as mentioned in Remark 4.
Then, it runs the O(n2)-time and O(n)-space enumeration algorithm EnumRM from the
final paragraph of the previous section. Each time EnumRM outputs α and Idxα, Match is
executed with these as input and using Ne1 , Pre and Suf. Main returns true if Match(α)
returns true for some α; otherwise, it returns false.

Proof of Theorem 5. It suffices to show the correctness of Main, namely Main returns
true if and only if r matches w. If w has a match for r, the (nonempty) backreferenced
substring is a repeat β of w that e matches. Then, Match(

−→
β) returns true by Lemma 6.

The converse also follows from the lemma. ◀

In what follows, we present the detailed behavior of the subroutine Match, incrementally
progressing from simple cases to more complex ones.

3.1 The Case of Nonoverlapping Right-Maximal Repeats
Let α be a fixed right-maximal repeat of the input string w. In this subsection, for simplicity,
we consistently assume that no occurrences of α overlap with each other. We call such an α

nonoverlapping right-maximal repeat. We first introduce in Section 3.1.1 a way to examine
matches whose backreferenced substring is α itself, namely NFA simulation with auxiliary
arrays and a technique called injection. Then, in Section 3.1.2, we extend it to simultaneously
examine all matches whose backreferenced substrings are α-extendable prefixes of α, instead
of examining α individually. There, in addition to injection, we use a technique called
summarization.6

3.1.1 Only the right-maximal repeat itself
Let rα denote the (pure) regular expression e0αe1αe2. We give an O(n(me + me1))-time
algorithm Match1(α) that checks whether rα matches w. It runs the NFA simulation of
Ne1 using the arrays Pre, Suf and Idxα as oracles. We begin by explaining the injection
technique. It is grounded on the following property:

▶ Lemma 8. For any sets of states S and T , and strings u and v, we have ∆(S, uv) =
∆(∆(S, u), v) and ∆(S, u) ∪∆(T, u) = ∆(S ∪ T, u).

This implies the following equation:

∆(clε(q0), uv) ∪∆(clε(q0), v) = ∆(∆(clε(q0), u), v) ∪∆(clε(q0), v)
= ∆(∆(clε(q0), u) ∪ clε(q0), v).

6 As noted in the introduction, these techniques are fairly standard on their own and often used without
being given names (see Section 4 for details), but our uses of them are novel and we give them explicit
names to clarify how and where they are used in our algorithm.

T. Nogami and T. Terauchi 91:7

Algorithm 1 Match1(α)

Correctness : See Lemma 10.
1 iprev ← ⊥; S ← ∅; ique ← ⊥; (∆, clε(q0), F)← Ne1

2 if e does not match α then return false
3 for inext ∈ Idxα do
4 if ique ̸= ⊥ then
5 for i← iprev to inext − 1 do
6 if S ̸= ∅ then S ← ∆(S, w[i])
7 if i = ique then S ← S ∪ clε(q0) /* Injection */

8 if S ∩ F ̸= ∅ and Suf[inext + |α|] then return true
9 iprev ← inext

10 if Pre[iprev − 1] then ique ← iprev + |α| − 1
11 return false

Therefore, we can simultaneously check whether e matches either a string uv or its suf-
fix v as follows: in the NFA simulation on uv, when u has been processed, replace the
current simulation set ∆(clε(q0), u) with the union of it and clε(q0), and then continue
with the remaining simulation on v. We call this replacement injection. More gener-
ally, for any positions i1 < i2 < · · · < il ≤ j, we can check whether e matches any of
w[i1..j], . . . , w[il..j] by testing the injected simulation set immediately after the character
w[j], namely ∆(· · ·∆(∆(clε(q0), w[i1..i2 − 1]) ∪ clε(q0), w[i2..i3 − 1]) ∪ clε(q0) · · · , w[il..j]).

We now explain Match1(α) whose pseudocode is shown in Algorithm 1. First, it checks
if e matches α and returns false if it is false; otherwise, the algorithm continues running. Let
i1 < i2 < · · · be the positions in Idxα. Then, it searches for the starting position ij1 of the
leftmost occurrence of α such that e0 matches the prefix w[..ij1 − 1] to the left of the α by
looking at Pre[ij − 1] sequentially for each ij ∈ Idxα (lines 3, 9 and 10). Remark that the α

at position ij1 is the leftmost candidate that the left α of rα may correspond to in a match.
If ij1 is found, it starts an NFA simulation of Ne1 from the position ij1 + |α| immediately

to the right of the α at position ij1 by setting S to be clε(q0) immediately after the character
w[ij1 + |α| − 1] (line 7). Note that S is ∅ prior to the assignment. In what follows, let
ij2 , ij3 , . . . denote the starting positions of the α’s to the right of the α at position ij1 in
sequence. Note that, unlike in the case of ij1 , we do not assume that e0 matches the prefix
w[..ijk−1] for ijk

, i.e., jk = j1 + k − 1 (k ≥ 2).
Next, the algorithm resumes the simulation and proceeds until the character w[ij2 − 1]

(lines 5 and 6). Then, it performs the acceptance testing S ∩ F ̸= ∅ (line 8). If it succeeds,
e0αe1α matches w[..ij2 + |α| − 1] by matching the two α’s to w[ij1 ..ij1 + |α| − 1] and
w[ij2 ..ij2 + |α| − 1]. Accordingly, the algorithm further checks whether e2 matches the
remaining suffix w[ij2 + |α|..] by looking at Suf[ij2 + |α|]. If it is true, rα matches w and
the algorithm returns true. Otherwise, there is no possibility that rα matches w in a way
that the right α of rα matches the α at position ij2 , and the algorithm continues running.

In this way, the algorithm proceeds from position ijk−1 to position ijk
for k = 2, 3, . . .

as follows, while assigning ijk−1 and ijk
to variables iprev and inext respectively at each k:

(i) it processes the substring w[iprev..iprev + |α| − 1] (lines 5 and 6), and then (ii) injects
clε(q0) into the simulation set S if the α at position iprev is a candidate that the left α of
rα may correspond to in a match (i.e., if e0 matches w[..iprev − 1]) (line 7). Next, (iii) it
resumes the simulation and proceeds until the character w[inext − 1] (lines 5 and 6), and

MFCS 2025

91:8 Efficient Matching of Some Fundamental Regular Expressions with Backreferences

then (iv) performs the acceptance testing and checks whether e2 matches the remaining
suffix w[inext + |α|..] (line 8). Finally, (v) it updates iprev using inext and if the α at ijk

is a
candidate that the left α of rα may correspond to in a match, then keep its right-adjacent
position ijk

+ |α| − 1 in ique for future injection (lines 9 and 10). If step (iv) succeeds for
some j, it returns true; otherwise, it returns false.

Match1 runs in O(n(me + me1)) time because it runs an NFA simulation of e and an
NFA simulation of e1 with injection. For correctness, the following is essential.

▶ Proposition 9. Let i1 < i2 < · · · be the positions in Idxα. Every time line 8 is reached
at an iteration with inext = ij, we have S =

⋃
j′∈J′ ∆(clε(q0), w[ij′ + |α|, ij − 1]) where

J ′ = {j′ ∈ [1, |Idxα|] | ij′ + |α| ≤ ij and w[..ij′ − 1] ∈ L(e0)}.

▶ Lemma 10 (Correctness of Match1). Let α be a nonoverlapping right-maximal repeat of
w. Then, Match1(α) returns true if and only if e matches α and rα matches w.

▶ Remark 11. In fact, Match1 works correctly for any repeat α and not only right-maximal
ones. This gives an O(n3m)-time matching algorithm for rewbs of our form by modifying
EnumRM to output not only all right-maximal repeats but all repeats. As mentioned in
the introduction, we note that this time complexity itself can also be achieved by existing
algorithms. Further improvements in time complexity require additional ideas that we
describe in the following sections as extensions of the baseline algorithm Match1.

▶ Remark 12. An essential and interesting property of the algorithm is that if it returns true,
the existence of a match is guaranteed, but we do not know where (e)1 and \1 match. This is
because injecting clε(q0) into the simulation set in an NFA simulation means identifying the
current position with the starting position of the NFA simulation.

3.1.2 The extendable prefixes of the right-maximal repeat
Recall that α is a fixed nonoverlapping right-maximal repeat of w. We extend Match1
to simultaneously examine all matches whose backreferenced substrings are α-extendable
prefixes of α. To this end, we split the NFA simulation of Match1 in two phases.

We first introduce a technique called summarization. Let q1, . . . , qm1 be the states of
Ne1 , the NFA equivalent to the middle subexpression e1 of the input rewb that we fixed
earlier.7 While ordinary NFA simulation starts only from the initial state, NFA simulation
with summarization (NFASS) starts its simulation from each state q1, . . . , qm1 . Consequently,
the “simulation set” of an NFASS is a vector of simulation sets S = ⟨S[1], . . . ,S[m1]⟩, where
each S[l] is the simulation set of an ordinary NFA simulation but with ql regarded as its
initial state. We write ∆sum(S, u) for ⟨∆(S[1], u), . . . , ∆(S[m1], u)⟩. Note that each step of
an NFASS takes O(m2

1) = O(m2
e1

) time.
Building on the above, we describe Match2(α) whose pseudocode is shown in Algorithm 2.

Although the overall flow is similar to Match1 in Algorithm 1, it has two major differences.
One difference is that the NFA simulation using a simulation set S has been replaced

by the NFASS using S (line 6). Similarly to step (ii) of Match1 (Section 3.1.1), when
the NFASS reaches an occurrence of α at position i where e0 matches the prefix w[..i− 1],
it injects {ql} into S[l] for each l ∈ [1, m1] immediately after the character w[i + |α| − 1].
Analogously to Proposition 9, the following proposition holds.

7 Note that me1 denotes the length of e1, whereas m1 denotes the number of states in Ne1 . However,
they may be regarded as the same because they differ only by a constant factor.

T. Nogami and T. Terauchi 91:9

Algorithm 2 Match2(α)

Correctness : See Lemma 15.
1 iprev ← ⊥; S ← ⟨∅, . . . , ∅⟩; ique ← ⊥; (Q = {q1, . . . , qm1}, ∆sum, F)← Ne1

2 Construct an array Preα such that Preα[k] = true ⇐⇒ α[..k] ∈ L(e) for k ∈ [1, |α|],
which is used later in Intmed

3 for inext ∈ Idxα do
4 if ique ̸= ⊥ then
5 for i← iprev to inext − 1 do
6 if S ≠ ⟨∅, . . . , ∅⟩ then S ← ∆sum(S, w[i]) /* Summarization */
7 if i = ique then S ← ⟨S[1]∪{q1}, . . . ,S[m1]∪{qm1}⟩ /* Injection */

8 T ← Intmed(inext, inext + |α| − 1)
9 if ∃ql ∈ T.S[l] ∩ F ̸= ∅ then return true

10 iprev ← inext

11 if Pre[iprev − 1] then ique ← iprev + |α| − 1
12 return false

Algorithm 3 Intmed(ibeg, iend)

Correctness : See Lemma 14.
1 T ← ∅; (∆, clε(q0), F)← Ne1

2 for i← ibeg to iend do
3 if Preα[i− (iend − |α|)] and Suf[i + 1] then T ← T ∪ clε(q0) /* Injection */
4 if T ̸= ∅ and i < iend then T ← ∆(T, w[i + 1])
5 return T

▶ Proposition 13. Let i1 < i2 < · · · be the positions in Idxα. Every time line 9 is reached
at an iteration with inext = ij, we have S[l] =

⋃
j′∈J′ ∆({ql}, w[ij′ + |α|, ij − 1]) where

J ′ = {j′ ∈ [1, |Idxα|] | ij′ + |α| ≤ ij and w[..ij′ − 1] ∈ L(e0)}.

The other major difference is the guard condition for the algorithm returning true
(line 9). Each time the NFASS reaches the occurrence of α at position ij , it runs another
NFA simulation on the α with injection (line 8). The aim of this subsimulation is, roughly,
to calculate a set of reachable states T from the initial state q0 of Ne1 by any suffix α[k + 1..]
of α whose corresponding prefix α[..k] is a candidate at position ij for the content of \1 in a
match, namely α[k+1..] where e matches α[..k] and e2 matches w[ij +k..]. Then, Match2(α)
composes T and S, that is, checks if there exists a state ql of T such that the acceptance
testing of S[l] succeeds (line 9). If such ql exists, we can build a match by concatenating
a suffix α[k + 1..] that takes q0 to ql and a substring u of w that lies in two occurrences of
α that takes ql to an accept state in Ne1 . In this scenario, r matches w and the algorithm
returns true; otherwise, it continues running.

Algorithm 3 shows Intmed(ibeg, iend), the algorithm which calculates T at line 8 of
Algorithm 2. It uses a Boolean array Preα such that Preα[k] = true ⇐⇒ α[..k] ∈ L(e) for
k ∈ [1, |α|] which is precomputed at the beginning of Match2(α) (line 2 of Algorithm 2).

Intmed requires that iend is the right end position of an occurrence of α and ibeg is a
position that belongs to the α. Note that the algorithm is presented in a generalized form to
be used later in Section 3.2, but Match2 always passes inext to the argument ibeg. Each
time it reaches a position i ∈ [ibeg, iend], it checks whether e matches the prefix of α which

MFCS 2025

91:10 Efficient Matching of Some Fundamental Regular Expressions with Backreferences

0 1 2 3 4 5 6 7 8 9 10 11 12 13

w : • a • b • b • a • b • b • a • b • b • a b • b • a

Pre : T T T T T F F F F F F F F F

Suf : F T F T F T F T F T F T F T

April 23 p.1/1

Figure 1 An example execution of Match2.

ends at i and e2 matches the remaining suffix of w by looking at Preα[i− (iend − |α|)] and
Suf[i + 1] (line 3). If both checks succeed, it starts an NFA simulation or injects clε(q0) into
the ongoing simulation set T . The correctness of the algorithm is as follows:

▶ Lemma 14 (Correctness of Intmed). Let ibeg and iend be positions of w where iend is the
right end of some occurrence of α and iend − |α| < ibeg ≤ iend. Then, Intmed(ibeg, iend)
returns T =

⋃
i∈I ∆(clε(q0), w[i + 1..iend]) where I = {i ∈ [ibeg, iend] | w[iend − |α|+ 1..i] ∈

L(e) and w[i + 1..] ∈ L(e2)}.

Given this, we prove the correctness of Match2 in the following lemma.

▶ Lemma 15 (Correctness of Match2). Let α be a nonoverlapping right-maximal repeat
of w. Then, there exists a prefix β of α such that e matches β and e0βe1βe2 matches
w if Match2(α) returns true. Conversely, Match2(α) returns true if there exists an
α-extendable prefix β of α such that e matches β and e0βe1βe2 matches w.

Regarding the time complexity, Match2 runs in O(n(me + m2
e1

)) time because its main
loop processes each position of w at most twice (once by the NFASS and once by Intmed at
line 8) and each step takes O(m2

e1
) time. Note that Intmed does not revisit any position

because we assumed that α is a nonoverlapping right-maximal repeat.

▶ Example 16. We illustrate Match2 with its execution on the instance defined as follows.
Let w = abbabbabbabba be the input string over Σ = {a, b} and e0(e)1e1\1e2 be the input
rewb, where e = Σ∗, e2 = (ΣΣ)∗, e0 matches the strings that contain at most two b’s, and
e1 matches those that contain b at least three and an odd number of times. We consider
the case where α = bba, which is a nonoverlapping right-maximal repeat of w. Note that its
occurrence array Idxα is [2, 5, 8, 11].

Figure 1 shows the point at which Intmed, which was called at line 8, has completed its
execution during the loop for inext = 11. The top row shows the position of w, and the two
rows labeled Pre and Suf represent the Boolean values of the corresponding arrays at each
position. Within the row of w, the bullet and the square mark the positions being currently
processed by the NFASS and the execution of Intmed, respectively. Analogously, the arrows
below w, starting from the bullets and the squares, indicate the past behaviors of those.

The bullet at position 4 marks where the NFASS started because the α at position 2 is
the leftmost among the occurrences of α that e0 matches the prefix of w to the left (i.e.,
Pre[1] = true). Similarly, the one at position 7 marks where injection was performed in the
NFASS because the α at position 5 was such an α (i.e., Pre[4] = true). Also, the squares at
positions 11 and 13 mark where the execution of Intmed started and injection was performed
in it because b and bba are prefixes of α that e matches (which always holds in this instance)
and e2 matches whose remaining suffix of w (i.e., Suf[11] = Suf[13] = true), respectively.

T. Nogami and T. Terauchi 91:11

Then, the algorithm checks at line 9 if e1 matches any of w[3..10], w[5, 10], w[6..10] and
w[8, 10], and returns true because e1 matches w[3..10] and w[6..10]. Observe that, as stated
in Remark 12, it cannot determine which of the four e1 actually matches.

3.2 The General Case of Right-Maximal Repeats
Let α be a right-maximal repeat. In this subsection, we give the full version of our algorithm
Match(α) that works for the general case where α is possibly overlapping.

We first explain why the aforementioned algorithm Match2(α) does not work correctly in
this case. There are two main reasons. One is the time complexity. Note that in Match2(α),
Intmed is called at every position right before where α occurs (line 8 of Algorithm 2). Under
the nonoverlapping assumption, the total time Intmed takes is linear in n because the total
length of all occurrences of α is also linear, but that does not necessarily hold when α may
overlap. The other reason concerns the correctness of the algorithm. When overlaps are
allowed, there may exist a match whose backreferenced substring occurs as nonoverlapping
α-extendable prefixes of some overlapping occurrences of α. Because Match2 is not designed
to find such matches, it may falsely report that no match exists.

The key observation to overcome these obstacles is, as stated in Remark 7, that it only
needs to check if there are matches whose backreferenced substrings are α-extendable prefixes
of α, rather than arbitrary prefixes of α. The following lemma gives a necessary condition
for a prefix of α being α-extendable (a related statement appears as Lemma 5 in [47]):

▶ Lemma 17. Let α be a right-maximal repeat. Suppose that α contains its prefix β at least
twice: once as a prefix and once elsewhere. Then β is a non-α-extendable prefix of α. More
generally, if two occurrences of α have an overlap of length d, the prefixes of α whose length
is no more than d are non-α-extendable prefixes of α.

In what follows, we divide the algorithm Match into two subalgorithms Match3A
and Match3B, and describe how they address the obstacles noted above. Match3A(α)
(resp. Match3B(α)) is an algorithm to detect a match whose backreferenced substring
occurs as an α-extendable prefix of some nonoverlapping occurrences (resp. a nonoverlapping
α-extendable prefix of some overlapping occurrences) of α. Consequently, Match(α) is an
algorithm that returns true if and only if at least one of the subalgorithms returns true.

Algorithm 4 shows Match3A(α), the subalgorithm for detecting a match whose backref-
erenced substring occurs as an α-extendable prefix of some nonoverlapping occurrences of α.
We explain the changes from Match2. Recall the first obstacle: Intmed takes too much
time. Let d be the maximum length of the overlapping substrings of the occurrences of α,
i.e., d = max({0}∪{Idxα[j− 1] + |α|− Idxα[j] | j ≥ 2}).8 Match3A precomputes d at line 3.
Clearly, this can be done in O(n) time by only considering each two adjacent occurrences of
α. Then, by Lemma 17, the algorithm only needs to examine a match whose backreferenced
substring is a prefix of α strictly longer than α[..d], namely any of α[..d + 1], . . . , α[..|α|] = α.
Therefore, Match3A calls Intmed so that it starts from position inext + d rather than inext

(line 11), ensuring its O(n(me + m2
e1

)) time complexity.
A subtle issue here is that in the NFASS of Match3A, there may be multiple timings of

injection before reaching another occurrence of α. This is dealt with by managing them with
an FIFO structure Que instead of a variable ique as was done in Match2.

8 EnumRM always returns Idxα of size at least 2. Note that an α that occurs less than twice need not be
considered.

MFCS 2025

91:12 Efficient Matching of Some Fundamental Regular Expressions with Backreferences

Algorithm 4 Match3A(α)

Correctness : See Lemma 18.
1 iprev ← ⊥; S ← ⟨∅, . . . , ∅⟩; Que← ⊥; (Q = {q1, . . . , qm1}, ∆sum, F)← Ne1

2 Construct an array Preα such that Preα[k] = true ⇐⇒ α[..k] ∈ L(e) for k ∈ [1, |α|],
which is used later in Intmed

3 d← max({0} ∪ {Idxα[j − 1] + |α| − Idxα[j] | j ≥ 2})
4 for inext ∈ Idxα do
5 if Que ̸= ⊥ then
6 for i = iprev to inext − 1 do
7 if S ≠ ⟨∅, . . . , ∅⟩ then S ← ∆sum(S, w[i]) /* Summarization */
8 if Que ̸= [] and Que.top = i then
9 S ← ⟨S[1] ∪ {q1}, . . . ,S[m1] ∪ {qm1}⟩ /* Injection */

10 Que.dequeue()

11 T ← Intmed(inext + d, inext + |α| − 1)
12 if ∃ql ∈ T.S[l] ∩ F ̸= ∅ then return true
13 iprev ← inext

14 if Pre[iprev − 1] then
15 if Que = ⊥ then Que← []
16 Que.enqueue(iprev + |α| − 1)

17 return false

0 1 2 3 4 5 6 7 8 9 10 11 12 13

• a • b • b • a • b • b • a • b • b a • b • b • a

T T T T T F F F F F F F F F

F T F T F T F T F T F T F T

April 23 p.1/1

(a) Match3A.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

• a • b • b • a • b • b a • b • b • a • b • b • a •

T T T T T F F F F F F F F F

F T F T F T F T F T F T F T

April 23 p.1/1

(b) Match3B.

Figure 2 Example executions. The meaning of the rows is the same as in Figure 1.

The following lemma states the correctness of Match3A. Recall the definition of α-
separability from Section 2.

▶ Lemma 18 (Correctness of Match3A). Let α be a right-maximal repeat of w. There exists
a prefix β of α such that e matches β and e0βe1βe2 matches w if Match3A(α) returns
true. Conversely, Match3A(α) returns true if there exists an α-extendable prefix β of α

such that (i) e matches β, (ii) e0βe1βe2 matches w and (iii) the two occurrences of β are
α-separable in w.

▶ Example 19. Figure 2(a) shows the execution of the algorithm on the same instance as
Example 16 where α = abba, which is an overlapping right-maximal repeat of w and whose
occurrence array Idxα is [1, 4, 7, 10]. It returns true because e1 matches w[3..9] and w[6..9].
Observe that it skips the check for a match whose backreferenced substring is a because a
is non-α-extendable by d = 1 and Lemma 17. In fact, a is right-maximal and the check is
instead performed by the execution of Match3A with α = a, as mentioned in Remark 7.

Next, we explain Match3B(α) shown in Algorithm 5, the subalgorithm for detecting

T. Nogami and T. Terauchi 91:13

Algorithm 5 Match3B(α)

Correctness : See Lemma 23.
/* zip(A, B) = [⟨A[j], B[j]⟩ | 1 ≤ j ≤ |A|] provided that |A| = |B| */

1 Fwd← []; j1 ← |Idxα|; j2 ← |Idxα|
2 while j1 ≥ 1 do
3 if Idxα[j2] ≤ Idxα[j1] + |α| − 1 then
4 Fwd[j1]← Idxα[j2]
5 j1 ← j1 − 1
6 else j2 ← j2 − 1
7 fprev ← 0; S ← ∅; (∆, clε(q0), F)← Ne1

8 for ⟨inext, fnext⟩ ∈ zip(Idxα, Fwd) do
9 if inext < fnext, Pre[inext − 1] and fprev < fnext then

10 S ← ∅
11 for i← max{inext, fprev} to fnext − 1 do
12 if Preα[i− inext + 1] and Suf[fnext + i− inext + 1] then
13 S ← S ∪ clε(q0) /* Injection */

14 if S ̸= ∅ and i < fnext − 1 then S ← ∆(S, w[i + 1])
15 if S ∩ F ̸= ∅ then return true
16 fprev ← fnext

17 return false

a match whose backreferenced substring occurs as a nonoverlapping α-extendable prefix of
some overlapping occurrences of α.

We first explain the challenges with detecting such matches in time linear in n. Fix an
occurrence of α and suppose that no other α overlaps it from the left and it overlaps other
α’s to the right. We name them α1, α2, α3, . . . , αk from left to right with α1 being the one
we fixed earlier. It may seem that Match3B(α) has to check matches between every pair of
these αi’s. Doing this naively takes Θ(k3) time, and as k = Θ(n) in general, this becomes
Θ(n3) time (for example, the case w = a2n and αi = w[i..i + n− 1] for i ∈ [1, n]).

Our key observation is that Match3B(α) actually only needs to examine matches between
each α and at most one α to its right. For example, in the above case of α1, . . . , αk, when
the algorithm checks if a match where e matches α1 exists, it only examines the matches
between α1 and αk. Moreover, the algorithm makes only one pass from α1 to αk to check all
the necessary matches. The following definition and lemma explain why this is correct.

▶ Definition 20. For every i ∈ Idxα, define f(i) := max{j ∈ Idxα | j ≤ i + |α| − 1}.

▶ Lemma 21. For any positions i, j ∈ Idxα such that i < j < f(i), neither w[i..j − 1] nor
w[j..f(i)− 1], nor any of their prefixes, is α-extendable.

Therefore, Match3B(α) only needs to examine matches between each α and the rightmost α

it overlaps. Moreover, when checking each α at position j between i and f(i), the algorithm
can skip the steps from j to f(i)− 1 and start from f(i). Thus, the overall checks can be
done in O(nme1) time using NFA simulation with oracles Pre, Suf, Preα and injection. Recall
that Pre[i] = true ⇐⇒ w[..i] ∈ L(e0) for i ∈ [0, n], Suf[j] = true ⇐⇒ w[j..] ∈ L(e2) for
j ∈ [1, n + 1] and Preα[k] = true ⇐⇒ α[..k] ∈ L(e) for k ∈ [1, |α|].

MFCS 2025

91:14 Efficient Matching of Some Fundamental Regular Expressions with Backreferences

We explain in detail how Match3B works. Algorithm 5 shows the pseudocode. First,
Match3B computes the array Fwd which represents f in O(n) time (lines 1 to 6). It uses
two pointers j1, j2 and updates them so that the invariant Fwd[j1] = f(Idxα[j1]) holds every
time line 4 is executed. Then, the algorithm scans each position inext of Idxα with the
starting position fnext of the rightmost α which the α at inext overlaps until the guard of
the if statement at line 9 becomes true. The guard has the following purpose. In the if
statement, the algorithm will check a match between a prefix of the α at inext and a prefix
of that at fnext. Prior to this, the guard excludes the cases (1) inext = fnext and (2) e0 does
not match the prefix to the left of the α at inext. It also excludes the case (3) fnext = fprev

to skip unnecessary checks.
If the guard holds, then the algorithm executes lines 10 to 15. The for loop in lines 11 to

14 is similar to that of Intmed (lines 2 to 4 of Algorithm 3). Each step performs injection
and at line 15 the algorithm checks the existence of a match whose backreferenced substring
is the prefix of α which starts at inext and ends at i between the α at inext and the one at
fnext. Note that the length of the prefix is i− inext + 1. The injection is performed only if e

matches the prefix and e2 matches the remaining suffix w[fnext + i− inext..]. The for loop
starts with i = max{inext, fprev} because the checks for the prefixes of w[inext..fprev − 1] can
be skipped when inext < fprev, as mentioned in the paragraph following Lemma 21. This
and condition (3) above ensure the linear time complexity of the algorithm with respect to n.

We show the correctness of Match3B. The following is similar to Proposition 13.

▶ Proposition 22. Let i1 < i2 < i3 < · · · be the positions in Idxα. Every time line 15 is
reached at an iteration with inext = ij , we have S =

⋃
i∈I ∆(clε(q0), w[i + 1..f(ij)− 1]) where

I = {i ∈ [max{ij , f(ij−1)}, f(ij) − 1] | w[ij ..i] ∈ L(e) and w[f(ij) + i − ij + 1] ∈ L(e2)}.
Here, we regard f(ij−1) = 0 when j = 1.

▶ Lemma 23 (Correctness of Match3B). Let α be a right-maximal repeat of w. There exists
a prefix β of α such that e matches β and e0βe1βe2 matches w if Match3B(α) returns
true. Conversely, Match3B(α) returns true if there exists an α-extendable prefix β of α

such that (i) e matches β, (ii) e0βe1βe2 matches w and (iii) the two occurrences of β are
not α-separable in w.

▶ Example 24. We illustrate Match3B using the same instance as in Examples 16 and 19.
We consider the case where α = abbabba, which is an overlapping right-maximal repeat of
w and whose occurrence array Idxα is [1, 4, 7]. Figure 2(b) shows part of the execution. In
this case, as mentioned in the paragraph immediately after Lemma 21, the algorithm only
needs to examine matches between the occurrences of α at positions 1 and f(1) = 7. The
squares at positions 1, 3 and 5 mark where injection was performed because a, abb and
abbab are prefixes of α that e matches and e2 matches whose remaining suffix of w (i.e.,
Suf[7] = Suf[9] = Suf[11] = true), respectively. It returns false because e1 matches none
of w[2..6], w[4..6] and w[6]. Note that a and abb are non-α-extendable prefix of α, and the
checks for these in this execution are actually redundant.

4 Related Work

We first mention efficient solutions of the pure regular expression matching problem. The
improvement of the O(nm)-time solution using NFA simulation was raised as an unsolved
problem by Galil [23], but in 1992, Myers successfully resolved it in a positive manner [34].
Since then, further improvements have been made by researchers, including Bille [9, 10, 12].
On the other hand, Backurs and Indyk have shown that under the assumption of the strong

T. Nogami and T. Terauchi 91:15

exponential time hypothesis, no solution exists within O((nm)1−ϵ) time for any ϵ > 0 [5].
Recently, Bille and Gørtz have shown the complexity with respect to a new parameter, the
total size of the simulation sets in an NFA simulation

∑n
i=0 |S(i)|, in addition to n and m [11].

We next discuss prior work on the matching problem of rewbs. The problem can be
solved by simulating memory automata (MFA), which are a model proposed by Schmid [43]
with the same expressive power as rewbs. An MFA has additional space called memory
to keep track of matched substrings. A configuration of an MFA M with k memories is a
tuple (q, u, (x1, s1), . . . , (xk, sk)) where q is a current state, u is the remaining input string
and (xj , sj) (j ∈ [1, k]) is the pair of the content substring xj and the state sj of memory
j. Therefore, the number of configurations of M equivalent to a given rewb on a given
string is O(n2k+1m). Because each step of an MFA simulation may involve O(n) character
comparisons, this gives a solution to the rewb matching problem that runs in O(n2k+2m)
time. Davis et al. gave an algorithm with the same time complexity as this [16]. Furthermore,
by precomputing some string indices as in this paper, a substring comparison can be done
in constant time, making it possible to run in O(n2k+1m) time. Therefore, for the rewbs
considered in this paper, these algorithms take time cubic in n because k = 1 for these rewbs,
and our new algorithm substantially improves the complexity, namely, to quadratic in n.

Regarding research on efficient matching of rewbs, Schmid proposed the active variable
degree (avd) of MFA and discussed the complexity with respect to avd [44]. Roughly, avd
is the minimum number of substrings that needs to be remembered at least once per step
in an MFA simulation. For example, in a simulation of an MFA equivalent to the rewb
(a∗)1\1(b∗)2\2, after consuming the substring captured by (a∗)1 in the transition which
corresponds to \1, configurations no longer need to keep the substring. In other words, it
only needs to remember only one substring at each step of the simulation, and hence its avd
is 1. On the other hand, avd((a∗)1(b∗)2\1\2) is 2. The avd of the rewbs considered in this
paper is always 1, but their method takes quartic (or cubic with the simple modification
on MFA simulation outlined above) time for them. Freydenberger and Schmid proposed
deterministic regular expression with backreferences and showed that the matching problem
of deterministic rewbs can be solved in linear time [21]. The rewbs considered in this paper
are not deterministic in general (for example, (a∗)1\1 is not).

Next, we mention research on efficient matching of pattern languages with bounded
number of repeated variables. A pattern with variables is a string over constant symbols and
variables. The matching problem for patterns is the problem of deciding whether a given
string w can be obtained from a given pattern p by uniformly substituting nonempty strings
of constant symbols for the variables of p. Note that, as remarked in the introduction, rewbs
can be viewed as a generalization of patterns by regular expressions.

Fernau et al. discussed the matching problem for patterns with at most k repeated
variables [18]. A repeated variable of a pattern is a variable that occurs in the pattern more
than once. In particular, for the case k = 1, they showed the problem can be solved in
quadratic time with respect to the input string length n. The patterns with one repeated
variable and the rewbs considered in this paper are independent. While these patterns can
use the variable more than twice, these rewbs can use regular expressions. Therefore, our
contribution has expanded the variety of languages that can be expressed within the same
time complexity with respect to n.

The algorithm by Fernau et al. [18] leverages clusters defined over the suffix array of
an input string, which are related to right-maximal repeats. Moreover, it is similar to
our approach in that it does the examination while enumerating candidate assignments to
the repeated variable. The key technical difference is that, as demonstrated in their work,

MFCS 2025

91:16 Efficient Matching of Some Fundamental Regular Expressions with Backreferences

matching these patterns can be reduced to finding a canonical match by dividing the pattern
based on wildcard variables. In contrast, matching the rewbs considered in this paper requires
handling the general regular expression matching, particularly the substring matching of the
middle expression e1, which makes such a reduction not applicable even when the number of
variable occurrences is restricted to 2.

Regarding the squareness checking problem mentioned in the introduction, Main and
Lorentz [30] and Crochemore [13] showed a linear-time solution on a given alphabet. However,
both solutions rely on properties specific to square-free strings, and extending them to the
matching problem considered in this paper seems difficult.

Finally, we mention related work on the techniques and concepts from automata theory
and stringology used in this paper. A similar approach to using oracles such as Pre and
Suf in NFA simulation is used in research on efficient matching of regular expressions with
lookarounds [31, 6]. Summarization has been applied to parallel computing for pure regular
expression matching [28, 25, 45]. Regarding injection, NFA simulation itself uses injection
internally to handle concatenation of regular expressions. That is, an NFA simulation of e1e2
can be seen as that of e2 that injects the ε-closure of the initial state of the NFA Ne2 whenever
e1 matches the input string read so far. Nonetheless, our use of these automata-theoretic
techniques for efficient matching of rewbs is novel. In fact, to our knowledge, this paper is
the first to propose an algorithm that combines these techniques.

The right-maximal repeats of a string are known to correspond to the internal nodes
of the suffix tree of the string [24]. Kasai et al. first introduced a linear-time algorithm
for traversing the internal nodes of a suffix tree using a suffix array [27]. Subsequently,
Abouelhoda et al. introduced the concept of the LCP-interval tree to make their traversal
more complete [1]. As stated in Section 2, our EnumRM that enumerates the right-maximal
repeats with the sorted starting positions of their occurrences is based on their algorithm.
To our knowledge, our work is the first to apply these stringology concepts and techniques to
efficient matching of rewbs.

5 Conclusion

In this paper, we proposed an efficient matching algorithm for rewbs of the form e0(e)1e1\1e2
where e0, e, e1, e2 are pure regular expressions, which are fundamental and frequently used
in practical applications. As stated in the introduction and Section 4, it runs in O(n2m2)
time, improving the best-known time complexity for these rewbs when n > m. Because n is
typically much larger than m, this is a substantial improvement.

Our algorithm combines ideas from both stringology and automata theory in a novel
way. The core of our algorithm consists of two techniques from automata theory, injection
and summarization. Together, they enable the algorithm to do all the examination for a
fixed right-maximal repeat and its extendable prefixes, which are concepts from stringology,
instead of examining each individually. By further leveraging a subtle property of extendable
prefixes, our algorithm correctly solves the matching problem in time quadratic in n.

A possible direction for future work is to further reduce the time complexity of the
algorithm. A natural next step would be to use maximal repeats instead of right-maximal
repeats. While this would not change the worst-case complexity with respect to n [14, 40],
it could lead to faster performance for many input strings. Another possible direction is
to extend the algorithm to support more general rewbs as mentioned in Remark 2. The
extension of our algorithm with support for other practical extensions such as lookarounds is
also challenging.

T. Nogami and T. Terauchi 91:17

References
1 Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Replacing suffix

trees with enhanced suffix arrays. J. Discrete Algorithms, 2(1):53–86, 2004. doi:10.1016/
S1570-8667(03)00065-0.

2 Alfred V. Aho. Algorithms for finding patterns in strings. In Jan van Leeuwen, editor,
Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity, pages
255–300. Elsevier and MIT Press, Cambridge, MA, USA, 1990.

3 Analysis script, 2025. URL: https://github.com/nogamita/MFCS2025.
4 Dana Angluin. Finding patterns common to a set of strings. J. Comput. Syst. Sci., 21(1):46–62,

1980. doi:10.1016/0022-0000(80)90041-0.
5 Arturs Backurs and Piotr Indyk. Which regular expression patterns are hard to match? In

Irit Dinur, editor, IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS
2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 457–466.
IEEE, IEEE Computer Society, 2016. doi:10.1109/FOCS.2016.56.

6 Aurèle Barrière and Clément Pit-Claudel. Linear matching of javascript regular expressions.
Proc. ACM Program. Lang., 8(PLDI):1336–1360, 2024. doi:10.1145/3656431.

7 Martin Berglund and Brink van der Merwe. Re-examining regular expressions with backrefer-
ences. Theor. Comput. Sci., 940(Part):66–80, 2023. doi:10.1016/j.tcs.2022.10.041.

8 Martin Berglund, Brink van der Merwe, and Steyn van Litsenborgh. Regular expressions with
lookahead. J. Univers. Comput. Sci., 27(4):324–340, 2021. doi:10.3897/jucs.66330.

9 Philip Bille. New algorithms for regular expression matching. In Michele Bugliesi, Bart Preneel,
Vladimiro Sassone, and Ingo Wegener, editors, Automata, Languages and Programming, 33rd
International Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings, Part I,
volume 4051 of Lecture Notes in Computer Science, pages 643–654. Springer, Springer, 2006.
URL: https://doi.org/10.1007/11786986_56, doi:10.1007/11786986_56.

10 Philip Bille and Martin Farach-Colton. Fast and compact regular expression matching. Theor.
Comput. Sci., 409(3):486–496, 2008. doi:10.1016/j.tcs.2008.08.042.

11 Philip Bille and Inge Li Gørtz. Sparse regular expression matching. In David P. Woodruff,
editor, Proceedings of the 2024 ACM-SIAM Symposium on Discrete Algorithms, SODA 2024,
Alexandria, VA, USA, January 7-10, 2024, pages 3354–3375. SIAM, SIAM, 2024. doi:
10.1137/1.9781611977912.120.

12 Philip Bille and Mikkel Thorup. Faster regular expression matching. In Susanne Albers,
Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas, and Wolfgang Thomas,
editors, Automata, Languages and Programming, 36th International Colloquium, ICALP
2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part I, volume 5555 of Lecture Notes
in Computer Science, pages 171–182. Springer, Springer, 2009. URL: https://doi.org/10.
1007/978-3-642-02927-1_16, doi:10.1007/978-3-642-02927-1_16.

13 Maxime Crochemore. Transducers and repetitions. Theor. Comput. Sci., 45(1):63–86, 1986.
doi:10.1016/0304-3975(86)90041-1.

14 Maxime Crochemore and Renaud Vérin. Direct construction of compact directed acyclic word
graphs. In Alberto Apostolico and Jotun Hein, editors, Combinatorial Pattern Matching, 8th
Annual Symposium, CPM 97, Aarhus, Denmark, June 30 - July 2, 1997, Proceedings, volume
1264 of Lecture Notes in Computer Science, pages 116–129. Springer, Springer, 1997. URL:
https://doi.org/10.1007/3-540-63220-4_55, doi:10.1007/3-540-63220-4_55.

15 James C. Davis, Christy A. Coghlan, Francisco Servant, and Dongyoon Lee. The impact of
regular expression denial of service (redos) in practice: an empirical study at the ecosystem
scale. In Gary T. Leavens, Alessandro Garcia, and Corina S. Pasareanu, editors, Proceedings of
the 2018 ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL,
USA, November 04-09, 2018, pages 246–256. ACM, 2018. doi:10.1145/3236024.3236027.

16 James C. Davis, Francisco Servant, and Dongyoon Lee. Using selective memoization to
defeat regular expression denial of service (redos). In 42nd IEEE Symposium on Security and

MFCS 2025

https://doi.org/10.1016/S1570-8667(03)00065-0
https://doi.org/10.1016/S1570-8667(03)00065-0
https://github.com/nogamita/MFCS2025
https://doi.org/10.1016/0022-0000(80)90041-0
https://doi.org/10.1109/FOCS.2016.56
https://doi.org/10.1145/3656431
https://doi.org/10.1016/j.tcs.2022.10.041
https://doi.org/10.3897/jucs.66330
https://doi.org/10.1007/11786986_56
https://doi.org/10.1007/11786986_56
https://doi.org/10.1016/j.tcs.2008.08.042
https://doi.org/10.1137/1.9781611977912.120
https://doi.org/10.1137/1.9781611977912.120
https://doi.org/10.1007/978-3-642-02927-1_16
https://doi.org/10.1007/978-3-642-02927-1_16
https://doi.org/10.1007/978-3-642-02927-1_16
https://doi.org/10.1016/0304-3975(86)90041-1
https://doi.org/10.1007/3-540-63220-4_55
https://doi.org/10.1007/3-540-63220-4_55
https://doi.org/10.1145/3236024.3236027

91:18 Efficient Matching of Some Fundamental Regular Expressions with Backreferences

Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021, pages 1–17. IEEE, IEEE, 2021.
doi:10.1109/SP40001.2021.00032.

17 Andrzej Ehrenfeucht and Grzegorz Rozenberg. Finding a homomorphism between two words
is np-complete. Inf. Process. Lett., 9(2):86–88, 1979. doi:10.1016/0020-0190(79)90135-2.

18 Henning Fernau, Florin Manea, Robert Mercas, and Markus L. Schmid. Pattern matching
with variables: Efficient algorithms and complexity results. ACM Trans. Comput. Theory,
12(1):6:1–6:37, 2020. doi:10.1145/3369935.

19 Henning Fernau and Markus L. Schmid. Pattern matching with variables: A multivariate
complexity analysis. Inf. Comput., 242:287–305, 2015. doi:10.1016/j.ic.2015.03.006.

20 Henning Fernau, Markus L. Schmid, and Yngve Villanger. On the parameterised complexity
of string morphism problems. Theory Comput. Syst., 59(1):24–51, 2016. doi:10.1007/
s00224-015-9635-3.

21 Dominik D. Freydenberger and Markus L. Schmid. Deterministic regular expressions with
back-references. J. Comput. Syst. Sci., 105:1–39, 2019. doi:10.1016/j.jcss.2019.04.001.

22 Hiroya Fujinami and Ichiro Hasuo. Efficient matching with memoization for regexes with
look-around and atomic grouping. In Stephanie Weirich, editor, Programming Languages
and Systems - 33rd European Symposium on Programming, ESOP 2024, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2024, Luxembourg
City, Luxembourg, April 6-11, 2024, Proceedings, Part II, volume 14577 of Lecture Notes in
Computer Science, pages 90–118. Springer, Springer, 2024. URL: https://doi.org/10.1007/
978-3-031-57267-8_4, doi:10.1007/978-3-031-57267-8_4.

23 Zvi Galil. Open problems in stringology. In Alberto Apostolico and Zvi Galil, editors,
Combinatorial Algorithms on Words, pages 1–8. Springer, 1985.

24 Dan Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Science and Computa-
tional Biology. Cambridge University Press, 1997. doi:10.1017/cbo9780511574931.

25 W. Daniel Hillis and Guy L. Steele Jr. Data parallel algorithms. Commun. ACM, 29(12):1170–
1183, 1986. doi:10.1145/7902.7903.

26 Shunsuke Inenaga, Hiromasa Hoshino, Ayumi Shinohara, Masayuki Takeda, and Setsuo
Arikawa. On-line construction of symmetric compact directed acyclic word graphs. In
Gonzalo Navarro, editor, Eighth International Symposium on String Processing and Information
Retrieval, SPIRE 2001, Laguna de San Rafael, Chile, November 13-15, 2001, pages 96–110.
IEEE, IEEE Computer Society, 2001. doi:10.1109/SPIRE.2001.989743.

27 Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park. Linear-time
longest-common-prefix computation in suffix arrays and its applications. In Amihood Amir
and Gad M. Landau, editors, Combinatorial Pattern Matching, 12th Annual Symposium, CPM
2001 Jerusalem, Israel, July 1-4, 2001 Proceedings, volume 2089 of Lecture Notes in Computer
Science, pages 181–192. Springer, 2001. URL: https://doi.org/10.1007/3-540-48194-X_17,
doi:10.1007/3-540-48194-X_17.

28 Richard E. Ladner and Michael J. Fischer. Parallel prefix computation. J. ACM, 27(4):831–838,
1980. doi:10.1145/322217.322232.

29 Felipe A. Louza, Simon Gog, and Guilherme P. Telles. Construction of Fundamental Data
Structures for Strings. Springer Briefs in Computer Science. Springer, 2020. doi:10.1007/
978-3-030-55108-7.

30 Michael G. Main and Richard J. Lorentz. Linear time recognition of squarefree strings. In
Combinatorial Algorithms on Words, pages 271–278. Springer, Springer Berlin Heidelberg,
1985. doi:10.1007/978-3-642-82456-2_18.

31 Konstantinos Mamouras and Agnishom Chattopadhyay. Efficient matching of regular expres-
sions with lookaround assertions. Proc. ACM Program. Lang., 8(POPL):2761–2791, 2024.
doi:10.1145/3632934.

32 Takayuki Miyazaki and Yasuhiko Minamide. Derivatives of regular expressions with lookahead.
J. Inf. Process., 27:422–430, 2019. doi:10.2197/ipsjjip.27.422.

https://doi.org/10.1109/SP40001.2021.00032
https://doi.org/10.1016/0020-0190(79)90135-2
https://doi.org/10.1145/3369935
https://doi.org/10.1016/j.ic.2015.03.006
https://doi.org/10.1007/s00224-015-9635-3
https://doi.org/10.1007/s00224-015-9635-3
https://doi.org/10.1016/j.jcss.2019.04.001
https://doi.org/10.1007/978-3-031-57267-8_4
https://doi.org/10.1007/978-3-031-57267-8_4
https://doi.org/10.1007/978-3-031-57267-8_4
https://doi.org/10.1017/cbo9780511574931
https://doi.org/10.1145/7902.7903
https://doi.org/10.1109/SPIRE.2001.989743
https://doi.org/10.1007/3-540-48194-X_17
https://doi.org/10.1007/3-540-48194-X_17
https://doi.org/10.1145/322217.322232
https://doi.org/10.1007/978-3-030-55108-7
https://doi.org/10.1007/978-3-030-55108-7
https://doi.org/10.1007/978-3-642-82456-2_18
https://doi.org/10.1145/3632934
https://doi.org/10.2197/ipsjjip.27.422

T. Nogami and T. Terauchi 91:19

33 Akimasa Morihata. Translation of regular expression with lookahead into finite state automaton.
Computer Software, 29(1):147–158, 2012. doi:10.11309/jssst.29.1_147.

34 Eugene W. Myers. A four russians algorithm for regular expression pattern matching. J. ACM,
39(2):430–448, 1992. doi:10.1145/128749.128755.

35 Kazuyuki Narisawa, Hideharu Hiratsuka, Shunsuke Inenaga, Hideo Bannai, and Masayuki
Takeda. Efficient computation of substring equivalence classes with suffix arrays. Algorithmica,
79(2):291–318, 2017. doi:10.1007/s00453-016-0178-z.

36 Taisei Nogami and Tachio Terauchi. On the expressive power of regular expressions with
backreferences. In Jérôme Leroux, Sylvain Lombardy, and David Peleg, editors, 48th Interna-
tional Symposium on Mathematical Foundations of Computer Science, MFCS 2023, August
28 to September 1, 2023, Bordeaux, France, volume 272 of LIPIcs, pages 71:1–71:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.MFCS.2023.71.

37 Taisei Nogami and Tachio Terauchi. Efficient matching of some fundamental regular expressions
with backreferences. CoRR, abs/2504.18247, 2025. arXiv:2504.18247, doi:10.48550/arXiv.
2504.18247.

38 Taisei Nogami and Tachio Terauchi. Measuring the expressive power of practical regular
expressions by classical stacking automata models. Inf. Comput., 305:105303, 2025. doi:
10.1016/j.ic.2025.105303.

39 Enno Ohlebusch. Bioinformatics Algorithms: Sequence Analysis, Genome Rearrangements, and
Phylogenetic Reconstruction. Oldenbusch Verlag, 2013. URL: http://www.oldenbusch-verlag.
de/.

40 Mathieu Raffinot. On maximal repeats in strings. Inf. Process. Lett., 80(3):165–169, 2001.
doi:10.1016/S0020-0190(01)00152-1.

41 Daniel Reidenbach and Markus L. Schmid. A polynomial time match test for large classes of
extended regular expressions. In Michael Domaratzki and Kai Salomaa, editors, Implementation
and Application of Automata - 15th International Conference, CIAA 2010, Winnipeg, MB,
Canada, August 12-15, 2010. Revised Selected Papers, volume 6482 of Lecture Notes in
Computer Science, pages 241–250. Springer, Springer, 2010. URL: https://doi.org/10.1007/
978-3-642-18098-9_26, doi:10.1007/978-3-642-18098-9_26.

42 Markus L. Schmid. A note on the complexity of matching patterns with variables. Inf. Process.
Lett., 113(19-21):729–733, 2013. doi:10.1016/j.ipl.2013.06.011.

43 Markus L. Schmid. Characterising REGEX languages by regular languages equipped with
factor-referencing. Inf. Comput., 249:1–17, 2016. doi:10.1016/j.ic.2016.02.003.

44 Markus L. Schmid. Regular expressions with backreferences: Polynomial-time matching
techniques. CoRR, abs/1903.05896, 2019. URL: http://arxiv.org/abs/1903.05896, arXiv:
1903.05896, doi:10.48550/arXiv.1903.05896.

45 Ryoma Sin’ya, Kiminori Matsuzaki, and Masataka Sassa. Simultaneous finite automata: An
efficient data-parallel model for regular expression matching. In 42nd International Conference
on Parallel Processing, ICPP 2013, Lyon, France, October 1-4, 2013, pages 220–229. IEEE
Computer Society, 2013. doi:10.1109/ICPP.2013.31.

46 Henry Spencer. A regular-expression matcher, page 35–71. Academic Press Professional, Inc.,
USA, 1994.

47 Masayuki Takeda, Tetsuya Matsumoto, Tomoko Fukuda, and Ichiro Nanri. Discovering
characteristic expressions in literary works. Theor. Comput. Sci., 292(2):525–546, 2003.
doi:10.1016/S0304-3975(02)00185-8.

48 Ken Thompson. Regular expression search algorithm. Commun. ACM, 11(6):419–422, 1968.
doi:10.1145/363347.363387.

49 WhyRE2. https://github.com/google/re2/wiki/WhyRE2 (Accessed: 2024-12-14).

MFCS 2025

https://doi.org/10.11309/jssst.29.1_147
https://doi.org/10.1145/128749.128755
https://doi.org/10.1007/s00453-016-0178-z
https://doi.org/10.4230/LIPIcs.MFCS.2023.71
https://arxiv.org/abs/2504.18247
https://doi.org/10.48550/arXiv.2504.18247
https://doi.org/10.48550/arXiv.2504.18247
https://doi.org/10.1016/j.ic.2025.105303
https://doi.org/10.1016/j.ic.2025.105303
http://www.oldenbusch-verlag.de/
http://www.oldenbusch-verlag.de/
https://doi.org/10.1016/S0020-0190(01)00152-1
https://doi.org/10.1007/978-3-642-18098-9_26
https://doi.org/10.1007/978-3-642-18098-9_26
https://doi.org/10.1007/978-3-642-18098-9_26
https://doi.org/10.1016/j.ipl.2013.06.011
https://doi.org/10.1016/j.ic.2016.02.003
http://arxiv.org/abs/1903.05896
https://arxiv.org/abs/1903.05896
https://arxiv.org/abs/1903.05896
https://doi.org/10.48550/arXiv.1903.05896
https://doi.org/10.1109/ICPP.2013.31
https://doi.org/10.1016/S0304-3975(02)00185-8
https://doi.org/10.1145/363347.363387
https://github.com/google/re2/wiki/WhyRE2

91:20 Efficient Matching of Some Fundamental Regular Expressions with Backreferences

Figure 3 SA and LCP of mississimiss$ (left), and its LCP-intervals (right).

A Algorithm for Enumerating Right-Maximal Repeats

First, we review suffix arrays. We assume that the alphabet Σ is totally ordered and has the
smallest character $. Let w be a string of length n having $ at the end and nowhere else. The
suffix array SA of w is defined as the lexicographically ordered array of all the suffixes of w.
More precisely, SA is the permutation of {1, . . . , n} such that w[SA[1]..] < · · · < w[SA[n]..]
where < denotes the lexicographical order. Suffix arrays are often used with additional data
structures, such as LCP-arrays. The LCP-array LCP is the array whose i-th element is the
length of the longest common prefix of the suffixes w[SA[i − 1]..] and w[SA[i]..]. It is well
known that both SA and LCP can be constructed in linear time (refer to Ohlebusch [39] or
Louza et al. [29]). For example, SA and LCP of mississimiss$ are shown on the left side of
Figure 3.

Using these, we can enumerate all right-maximal repeats α of w with the sorted array
Idxα of the starting positions of the occurrences of α in O(n2) time, as we will explain below.
Right-maximal repeats are known to have a one-to-one correspondence with the internal
nodes of the suffix tree [24], which have a one-to-one correspondence with the concept called
LCP-intervals, introduced by Abouelhoda et al. [1]. An LCP-interval is intuitively an index
interval [u, v] of SA that cannot be extended without changing the longest common prefix of
its corresponding suffixes. We call the length of the longest common prefix LCP-length. The
right side of Figure 3 shows an example of LCP-intervals.

We show the enumeration subroutine used in our algorithm. [1] showed an O(n)-time
enumeration algorithm for right-maximal repeats. By slightly modifying this, we obtain
an O(n2)-time algorithm EnumRM that enumerates each right-maximal repeat α with the
sorted array Idxα of all starting positions of the occurrences of α.

We explain in detail how the algorithm works. Algorithm 6 shows the pseudocode. The
algorithm uses a stack to manage the visited LCP-intervals. An LCP-interval I being visited
is represented by the pair ⟨lcp, Idx⟩ consisting of the LCP-length lcp of I and the array Idx

T. Nogami and T. Terauchi 91:21

Algorithm 6 EnumRM (adapted from Algorithm 4.4 in [1])

1 push(⟨0,⊥⟩); LCP[n + 1]← 0
2 for i← 2 to n do
3 if LCP[i + 1] > top.lcp then push(⟨LCP[i + 1], {SA[i]})
4 else if LCP[i + 1] = top.lcp then
5 if top.lcp ̸= 0 then insert SA[i] into top.Idx
6 else
7 insert SA[i] into top.Idx
8 while LCP[i + 1] < top.lcp do
9 rmrep← pop; process(rmrep)

10 if LCP[i + 1] ≤ top.lcp then
11 if top.lcp ̸= 0 then merge rmrep.Idx into top.Idx
12 else push(⟨LCP[i + 1], rmrep.Idx⟩)

representing {SA[j] | j ∈ I and j ≤ i}. Initially, the stack has ⟨0,⊥⟩. Next, the algorithm
repeats the following steps for i = 2, 3, . . . , n. Let top = ⟨lcp, Idx⟩ denote the pair at the top
of the stack. We write Itop for the LCP-interval represented by top.

In each iteration of the for loop, the algorithm first compares lcp with LCP[i + 1]. We
assume LCP[n + 1] = 0. (1) If LCP[i + 1] > lcp, it pushes ⟨LCP[i + 1], {SA[i]}⟩ into the
stack, because index i is at the left end of an LCP-interval whose LCP-length is greater
than lcp. (2) If LCP[i + 1] = lcp and the stack has no LCP-interval, it inserts SA[i] into
Idx while preserving the ascending order, because index i belongs to the LCP-interval Itop.
(3) If LCP[i + 1] < lcp, it first inserts SA[i] into Idx because index i is at the right end of
Itop. Then, it pops all LCP-intervals whose right end is at i while passing each popped entry
rmrep to a placeholder function process. A subtle point lies in the relationship between the
popped LCP-interval and the LCP-interval that was directly beneath it on the stack (see
Theorem 4.3 of [1] for details). Depending on this relationship, Idx of rmrep must be merged
while preserving the ascending order or pushed as a part of a new LCP-interval accordingly.

For example, the algorithm enumerates the right-maximal repeats of mississimiss$ in
the order ⟨4, [2, 5]⟩ → ⟨3, [2, 5, 10]⟩ → ⟨1, [2, 5, 8, 10]⟩ → ⟨4, [1, 9]⟩ → ⟨2, [4, 7]⟩ → ⟨3, [3, 6]⟩ →
⟨2, [3, 6, 11]⟩ → ⟨1, [3, 4, 6, 7, 11, 12]⟩ (see Figure 3). The algorithm runs in O(n2) time because
each step of (1)(2)(3) takes O(n) time, and each is executed at most O(n) times. The space
complexity is O(n).

B Omitted Proofs

Proof of Lemma 6. Immediate from Lemmas 18 and 23. ◀

Proof of Lemma 8. Immediate from the definition of ∆. ◀

Proof of Proposition 9. It suffices to prove the statement of the proposition with “line 8”
replaced by “line 9.” We prove by induction on j. We write J ′

j for {j′ ∈ [1, |Idxα|] | ij′ + |α| ≤
ij and w[..ij′ − 1] ∈ L(e0)} and Sj for

⋃
j′∈J′

j
∆(clε(q0), w[ij′ + |α|, ij − 1]). We show S = Sj

right after line 8 in the iteration with inext = ij .
Case j = 1: Because ique = ⊥, the if statement in lines 4 to 8 is skipped and S = ∅ holds
when it reaches line 9. On the other hand, J ′

1 = ∅ because no α occurs before the α at i1.
Therefore, S = S1 = ∅.

MFCS 2025

91:22 Efficient Matching of Some Fundamental Regular Expressions with Backreferences

Case j − 1 → j: By the induction hypothesis, we have J ′
j−1 = {j′ ∈ [1, |Idxα|] |

ij′ + |α| ≤ ij−1 and w[..ij′ − 1] ∈ L(e0)} and S = Sj−1 when it reaches line 9 in
the iteration with inext = ij−1. At line 10, iprev = ij−1 holds. Let J ′

j−1,j denote
{j′ | ij−1 ≤ ij′ + |α| < ij and w[..ij′ − 1] ∈ L(e0)}. Observe that J ′

j = J ′
j−1 ∪ J ′

j−1,j .
From the assumption that α is a nonoverlapping repeat, J ′

j−1,j is either ∅ or {j − 1}. We
consider two cases.

Case Pre[iprev − 1] = true: In this case, e0 matches w[..ij−1 − 1]. Therefore, J ′
j−1,j =

{j− 1}. At line 10, ique becomes ij−1 + |α| − 1. Then, inext becomes ij at line 3. Now,
ique ̸= ⊥ and the algorithm enters the for loop at line 5. We further divide the case
into two.
∗ Case S = ∅: In this case, we have J ′

j−1 = ∅. Lines 6 and 7 are skipped until i

becomes ique = ij−1 + |α| − 1. When i = ique, the algorithm injects clε(q0) into S

at line 7 and starts an NFA simulation on w[ij−1 + |α|..ij − 1]. Thus, right after
line 8, S = ∆(clε(q0), w[ij−1 + |α|..ij − 1]) holds. Therefore, J ′

j = J ′
j−1,j = {j − 1}

and S = Sj .
∗ Case S ̸= ∅: After the for loop at lines 5 to 7 is executed, S becomes

∆(∆(Sj−1, w[ij−1..ij−1 + |α| − 1]) ∪ clε(q0), w[ij−1 + |α|..ij − 1]).

By the induction hypothesis, S = ∆(∆(
⋃

j′∈J′
j−1

∆(clε(q0), w[ij′ + |α|..ij−1 −
1]), w[ij−1..ij−1 + |α| − 1]) ∪ clε(q0), w[ij−1 + |α|..ij − 1]). By Lemma 8, this is
equal to

⋃
j′∈J′

j−1∪{j−1} ∆(clε(q0), w[ij′ + |α|..ij − 1]). We have J ′
j = J ′

j−1 ∪{j− 1}.
Therefore, S = Sj .

Case Pre[iprev−1] = false: In this case, e0 does not match w[..ij−1−1] and J ′
j−1,j = ∅.

At line 3, inext becomes ij . We further divide the case into two.
∗ Case ique = ⊥: In this case, we have S = ∅. The if statement at lines 4 to 8 is

skipped and S = Sj−1 holds right after line 8. Because J ′
j = J ′

j−1 = ∅, we have
S = Sj .

∗ Case ique ̸= ⊥: After the for loop at lines 5 to 7 is executed, S becomes

∆(Sj−1, w[ij−1..ij − 1]).

By Lemma 8 and the induction hypothesis, S = ∆(
⋃

j′∈J′
j−1

∆(clε(q0), w[ij′ +
|α|..ij−1−1]), w[ij−1..ij−1]) =

⋃
j′∈J′

j−1
∆(clε(q0), w[ij′ +|α|..ij−1]) holds. Because

J ′
j = J ′

j−1, we have S = Sj .
◀

Proof of Lemma 10. Let i1 < i2 < · · · be the positions in Idxα. Suppose that Match1(α)
returns true. From the definition of the algorithm and by Proposition 9, α ∈ L(e) and there
exist ij′ , ij ∈ Idxα such that (1) w[..ij′ − 1] ∈ L(e0), (2) ij′ + |α| < ij , (3) ∆(clε(q0), w[ij′ +
|α|..ij − 1]) ∩ F ≠ ∅ and (4) w[ij + |α|..] ∈ L(e2). Therefore, e matches α and rα matches w.
The other direction follows in the same manner. ◀

Proof of Proposition 13. The proof follows similarly to Proposition 9. ◀

Proof of Lemma 14. Recall that I = {i ∈ [ibeg, iend] | w[iend − |α|+ 1..i] ∈ L(e) and w[i +
1..] ∈ L(e2)}. For every i ∈ [ibeg, iend], we write I≤i for {i′ ∈ I | i′ ≤ i}. Because the
statement easily holds when ibeg = iend, we assume ibeg ≤ iend− 1 in what follows. We prove
the following statement by induction:

T. Nogami and T. Terauchi 91:23

▷ Claim. Suppose that ibeg ≤ iend − 1. Every time line 4 has been executed at an iteration
with i ∈ [ibeg, iend − 1], we have T =

⋃
i′∈I≤i

∆(clε(q0), w[i′ + 1..i + 1]).

Proof. The base case when i = ibeg is obvious. Suppose that the step i − 1 of the for
loop has finished, and line 4 has been executed. By the induction hypothesis, T =⋃

i′∈I≤i−1
∆(clε(q0), w[i′ + 1..i]). In step i, we consider two cases.

Case i ∈ I: Observe that I≤i = I≤i−1 ∪ {i}. In this case, the algorithm injects
clε(q0) into T at line 3. Then, immediately after line 4 has been executed, T be-
comes ∆(

⋃
i′∈I≤i−1

∆(clε(q0), w[i′ + 1..i]) ∪ clε(q0), w[i + 1]). By Lemma 8, this is equal
to

⋃
i′∈I≤i

∆(clε(q0), w[i′ + 1..i + 1]).
Case i /∈ I: Observe that I≤i = I≤i−1. In this case, the if statement at line 3 is
skipped. If T = ∅ right after line 3, then I≤i−1 is also empty, which implies I≤i = ∅,
and thus the statement holds. Otherwise, immediately after line 4 has been executed,
T becomes ∆(

⋃
i′∈I≤i−1

∆(clε(q0), w[i′ + 1..i]), w[i + 1]). By Lemma 8, this is equal to⋃
i′∈I≤i

∆(clε(q0), w[i′ + 1..i + 1]).
◁

Finally, we divide the cases into two for the last iteration of the for loop.
Case iend ∈ I: after line 3 is executed, T becomes

⋃
i′∈I≤iend−1

∆(clε(q0), w[i′ + 1..iend])∪
clε(q0) =

⋃
i′∈I≤iend

∆(clε(q0), w[i′ + 1..iend]).
Case iend /∈ I: similarly to the above case.

◀

Proof of Lemma 15. Let i1 < i2 < · · · be the positions in Idxα. Suppose that Match2(α)
returns true in the iteration with inext = ij . From the definition of Match2 and by
Proposition 13 and Lemma 14, there exist (1) i ∈ [ij , ij + |α|−1] such that w[ij ..i] ∈ L(e) and
w[i + 1..] ∈ L(e2), (2) ql ∈ ∆(clε(q0), w[i + 1..ij + |α| − 1]) and (3) ij′ such that ij′ + |α| ≤ ij ,
w[..ij′ − 1] ∈ L(e0) and ∆({ql}, w[ij′ + |α|..ij − 1]) ∩ F ̸= ∅. Let k be i− ij + 1. Note that
w[i + 1..ij + |α| − 1] = α[k + 1..].

Let β be the prefix α[..k]. From (1) above, e matches β. We claim that e0βe1βe2
matches w, where the two β’s correspond to the ones at positions ij′ and ij . In fact, because
ql ∈ ∆(clε(q0), α[k + 1..]) and ∆({ql}, w[ij′ + |α|..ij − 1]) ∩ F ≠ ∅, it follows that e1 matches
α[k+1..]w[ij′ +|α|..ij−1]. Observe that α[k+1..] = w[ij′ +k..ij′ +|α|−1]. From this, together
with (1) and (3), there is a match where e0 matches w[..ij′ − 1], e1 matches w[ij′ + k..ij − 1]
and e2 matches w[ij + k..].

Conversely, let β be an α-extendable prefix α[..k] and suppose that there is a match
with β. Because

−→
β = α and α is nonoverlapping, the starting positions of the two β’s

can be taken as ij′ and ij satisfying ij′ + |α| ≤ ij . Let γ be α[k + 1..]. Because e1
matches γ(w[ij′ + |α|..ij − 1]), there exists a state ql such that ql ∈ ∆(clε(q0), γ) and
∆({ql}, w[ij′ + |α|..ij − 1]) ∩ F ̸= ∅. We first show that ql belongs to T in the iteration with
inext = ij . Observe that T = Intmed(ij , ij + |α| − 1) and γ = w[ij + |β|..ij + |α| − 1]. By
Lemma 14, it suffices to show that ij + |β| − 1 belongs to the index set I where I defined in
the lemma, and this can be easily checked. Next, we show that S[l] ∩ F ̸= ∅ in the same
iteration. By Proposition 13, it suffices to show that ij′ belongs to the index set J ′ where J ′

defined in the proposition, and this can also be easily checked. Therefore, Match2 returns
true in the iteration with inext = ij . ◀

Proof of Lemma 17. Assume to the contrary that β is α-extendable. If α contains an
occurrence of β at any position other than the beginning, the occurrence of β could extend to

MFCS 2025

91:24 Efficient Matching of Some Fundamental Regular Expressions with Backreferences

another occurrence of α, which contains another occurrence of β. By repeating this infinitely,
it could extend to the right without bound. ◀

Proof of Lemma 18. Let i1 < i2 < · · · be the positions in Idxα.

▷ Claim. Suppose that Que ̸= ⊥ holds for the first time in an iteration with inext = ij0 .
For each ij ≥ ij0 , right after executing the iteration with inext = ij , Que represents
{ij′ + |α| − 1 | ij′ ≤ ij ≤ ij′ + |α| − 1 ∧ w[..ij′ − 1] ∈ L(e0)} in sorted order.

Proof. We prove by induction on j. The base case j = j0 easily holds. At the beginning of the
iteration with inext = ij , Que represents {ij′ + |α|−1 | ij′ ≤ ij−1 ≤ ij′ + |α|−1∧w[..ij′−1] ∈
L(e0)}. Then, right after completing the execution of the for loop in lines 6 to 10, Que
becomes {ij′ + |α| − 1 | ij′ ≤ ij−1 ∧ ij ≤ ij′ + |α| − 1 ∧ w[..ij′ − 1] ∈ L(e0)}. We divide the
case into two.

Case w[..ij−1] ∈ L(e0): The algorithm enqueues ij +|α|−1 into Que at line 16. Therefore,
the claim holds for ij .
Case w[..ij − 1] /∈ L(e0): The if statement in lines 14 to 16 is skipped. Therefore, the
claim holds for ij .

◁

▷ Claim. Every time line 12 is reached at iteration with inext = ij , we have S[l] =⋃
j′∈J′ ∆(ql, w[ij′ + |α|, ij − 1]) where J ′ = {j′ ∈ [1, |Idxα|] | ij′ + |α| ≤ ij and w[..ij′ − 1] ∈

L(e0)}.

Proof. With the above claim, the proof follows in the same way as for Proposition 9. ◁

The lemma can be proved in the same way as Lemma 15, using the above claim and
Lemma 14. ◀

Proof of Lemma 21. The α at position j contains w[f(i)..j + |α| − 1], which is a longer
prefix than w[i..j − 1], twice. Also, the α at position i contains w[j..f(i) − 1] twice. The
lemma follows from these and Lemma 17. ◀

Proof of Proposition 22. The proof follows similarly to Lemma 14. ◀

Proof of Lemma 23. We prove only one direction. Let i1 < i2 < · · · be the positions in
Idxα. Suppose that there is a prefix β = α[..k] of α and positions ij and ij′ such that (1)
−→
β = α, (2) β ∈ L(e), (3) ij + k ≤ ij′ , (4) w[..ij − 1] ∈ L(e0), (5) w[ij + k..ij′ − 1] ∈ L(e1),

(6) w[ij′ + k..] ∈ L(e2) and (7) the β’s are not α-separable, i.e., ij′ ≤ ij + |α| − 1.
We claim that ij′ = f(ij). Otherwise, ij < ij′ < f(ij) holds, and by Lemma 21,

−−−−−−−−→
w[ij ..ij′ − 1] ≠ α, which contradicts (1) and (3). In what follows, we show that the algorithm
returns true at an iteration with inext = ij . We first check the guard condition at line 9.
Observe that fnext = f(ij). Among the three conditions, the first two clearly hold. In
fact, the third condition also holds: when j = 1, we have fprev = 0 and the condition
trivially holds. Assume to the contrary that it does not hold for j ≥ 2. In this case, we
have fprev = f(ij−1) and f(ij−1) = f(ij). Then, the occurrence of α at ij−1 contains
β = w[ij ..ij + k − 1] = w[ij−1..ij−1 + k − 1] twice, violating Lemma 17.

By Proposition 22, at line 15, S becomes
⋃

i∈I ∆(clε(q0), w[i + 1..f(ij) − 1]) where
I = {i ∈ [max{ij , f(ij−1)}, f(ij)−1] | w[ij ..i] ∈ L(e) and w[f(ij)+ i− ij +1] ∈ L(e2)}. Here,
we regard f(ij−1) = 0 when j = 1. It suffices to show that ij + k − 1 ≥ max{ij , f(ij−1)}.
If ij ≥ f(ij−1), it trivially holds, so we may assume j ≥ 2 and ij < f(ij−1). Suppose that

T. Nogami and T. Terauchi 91:25

f(ij−1) > ij +k−1. Let β′ be w[ij ..f(ij−1)−1], which is equal to β or longer. By Lemma 21,
−→
β′ ̸= α holds. This is a contradiction. ◀

MFCS 2025

	1 Introduction
	2 Preliminaries
	3 Efficient Matching
	3.1 The Case of Nonoverlapping Right-Maximal Repeats
	3.1.1 Only the right-maximal repeat itself
	3.1.2 The extendable prefixes of the right-maximal repeat

	3.2 The General Case of Right-Maximal Repeats

	4 Related Work
	5 Conclusion
	A Algorithm for Enumerating Right-Maximal Repeats
	B Omitted Proofs

