— EEHYO PPL 2019(455£@7 0753765070753

Jill]
on
bils]
N

39

Failure of Cut-Elimination in Cyclic Proofs of

Separation Logic

Daisuke Kimura, Koji Nakazawa, Tachio Terauchi, and

Hiroshi Unno

This paper studies the role of the cut rule in cyclic proof systems for separation logic. A cyclic proof sys-
tem is a sequent-calculus style proof system for proving properties involving inductively defined predicates.
Recently, there has been much interest in using cyclic proofs for proving properties described in separation
logic with inductively defined predicates. In particular, for program verification, several theorem provers
based on mechanical proof search procedures in cyclic proof systems for separation logic have been proposed.
This paper shows that the cut-elimination property fails in cyclic proof systems for separation logic in sev-
eral settings. We present two systems, one for sequents with single-antecedent and single-conclusion, and
another for sequents with single-antecedent and multiple-conclusions. To show the cut-elimination failure,
we present concrete and reasonably simple counter-example sequents which the systems can prove with cuts
but not without cuts. This result suggests that the cut rule is important for a practical application of cyclic
proofs to separation logic, since a naive proof search procedure, which tries to find a cut-free proof, gives a

limit to what one would be able to prove.

1 Introduction

Separation logic [15] is a popular program logic
for reasoning about programs that use pointer data
structures. In separation logic, reasoning about re-
cursive data structures is made possible by aug-
menting the logic with inductively defined predi-
cates. For example, a predicate which says that
a pointer points to a list may be written as follows:

Is(z,y) =z —y|z— 2zxls(z,y).
Here, — y means that the memory cell at address
x contains the value y, and A * B is a separating
conjunction which says that the memory is a union
of two memory regions h4 and hp with disjoint do-
mains such that h4 satisfies A and hp satisfies B.

SEERFLOIEERALILRICBIT B v MBREATENL.

A KHEH, BIF K, Toho University.

I, 4 TR KF, Nagoya University.

FPRLREL, FARH K, Waseda University.

WEF LA, 9k KEE, Tsukuba University.
av¥a—%v7 h7x7,Vol.37,No.1 (2020), pp.39-52.
[WFFEam=C) 2019 4F 6 H 14 H2ft.

Therefore, 1s(z,y) says that = points to a singly-
linked list that ends in y. (We refer to Section 2 for
the formal definition for our fragment of separation
logic.)

In the verification approach for heap-manipulating
programs based on Hoare-style logic, showing va-
lidity of entailments A = B between formulas in
separation logic is necessary for the rule of conse-
quence:

{A1}P{B1}
{A2}P{B>}

where P is a program to be verified, and {A} P{B}
is a Hoare-triple with a pre-condition A and a post-

A2 ':Al and B1 ': BQ

condition B. For this purpose, several proof sys-
tems that employ sequents of the form A + B
and automatic theorem provers based on proof-
search algorithms in that systems have been pro-
posed [1][2][8]-[10][13][17][18]-

In a sequent-calculus style proof system, it is cus-
tomary to handle inductively defined predicates like
Is(z, y) by adding a set of rules that introduce them

40 N R AR

to left and right sides of sequents. For 1s(z,y), the
right introduction rules are:

AFz— zx1s(z,y)
Arls(z,y)

Atz —y
At 1s(z,y)

and the left introduction rule is:

(base case)

(indcase) AxClz,y]+ B

(Ind)
Axls(z,y) - B ,
where (base case) and (ind case) stand for A x z —
yF Clz,y] and Axz — zx Clz,y] b Clz,y] with
fresh variable z, respectively. Clz,y] is a formula
that may have free variables x and y. The premise
(base case) is the base case of the induction, that is,
it says that C holds in the base case. The premise
(ind case) encodes the inductive case with the in-
duction hypothesis C, that is, it roughly says that
if C holds for the smaller list from z to y then it
also holds for the larger list from x to y. The rule
is an obstacle to a mechanical proof search because
one needs to guess an appropriate C.

A cyclic proof system [5]-[7] offers an alternative
approach to doing proofs about inductively defined
predicates in a sequent calculus. In this approach,
the left introduction rule of an inductively defined
predicate is replaced by a rule that directly encodes
the inductive definition. For instance, the left in-
troduction rule of 1s(z, y) is given as

Axz—ykB Axzr— zxls(z,y)F B UL
Axls(z,y) F B ()

A proof search in a cyclic proof system starts from
the root goal sequent, mechanically building the
proof tree upwards by applying an applicable rule
at each node. The search may stop by reaching a se-
quent (called a bud) that it has seen before (called a
companion), thereby forming a “cyclic” proof that
has an edge from a leaf bud node to an internal
companion node. To ensure correctness, a certain
condition, called global trace condition, is imposed
on the cyclic structure (cf. Section 3 for details).
Importantly, in the absence of the cut rule, the
possible children of a node can be syntactically de-
termined from the (finitely many) rules applicable
at the node, which substantially expedites the me-

chanical proof sea]rch.J[1 The property has been

11 Technically, this is only true if structural rules
such as weakening, contraction, and substitution
are made implicit.

used to a great advantage by researchers of cyclic
proofs, and they have proposed automatic theorem
provers based on cyclic proofs [8][9]. Furthermore,
as we discuss below, some automatic induction-
based provers for separation logic [10][13][17][18] can
also be seen as cyclic proof systems with restricted
forms of cuts.

Meanwhile, cyclic proof systems are being in-
tensively studied in the theoretical computer sci-
ence community (for various logics, such as sep-
aration logic, first-order logic, and linear logic)
[3]-[5][7]-[9][14][16]. The research has lead to some
remarkable results, such as showing that the cyclic
proof system (with cuts) is strictly more power-
ful than the standard inductive first-order logic se-
quent calculus (i.e., that with a rule analogous to
the (Ind) rule above) [3][7].
damental proof-theoretic properties, such as cut-

However, some fun-

elimination and completeness, still remain open.
As the main contribution of this paper, we show
that cut-elimination fails in cyclic proof systems
for separation logic. As remarked above, the re-
sult is not only of theoretical interest since the
presence of the cut rule substantially affects a me-
chanical proof search process. We prove the re-
sult for two cyclic proof systems for separation
logic: CSLoIDw which deduces sequents with sin-
gle conclusions, and CSLYTDw which deduces se-
quents with multiple conclusions. We show the cut-
elimination failure by presenting concrete counter-
example sequents which the systems can prove with
cuts but not without cuts. The counter-examples
are fairly simple formulas about singly-linked lists.
They contain three kinds of semantically equivalent
predicates 1s(z,y), 1sX(z,y) and sl(z,y) each de-
scribing a singly-linked list from x to y. The predi-
cate Is(z, y) is the usual list definition shown above,
whereas 1sX(z,y) defines a list to be either a list
of an odd length or a list of an even length where
odd and even length lists are defined inductively
in a manner analogous to ls(z,y). The predicate
sl(z,y) is a “backward” definition of a list whereby
a list is constructed by adding an element to the
tail rather than to the head. We show that the
sequent 1s(z,y) F 1sX(z,y) is a counter-example
to cut-elimination for CSLoIDw, and the sequent
Is(z,y) F sl(z,y) is that for CSL}’IDw. Thus, a
practical implication of our results is that (some
form of) a cut rule is necessary for designing useful

Vol. 37 No. 1 Feb. 2020 41

theorem provers based on cyclic proofs, at least for
separation logic.

The rest of the paper is organized as follows. We
discuss related work next. Section 2 introduces
SLo, a simple fragment of separation logic used in
the rest of the paper. Section 3 presents CSLoIDw
and shows our first main result which says that
CSLoIDw is

closely related to the system proposed by Broth-

cut-elimination fails for CSLgIDw.

erston et al. [8], and the section also shows that
cut-elimination fails in their system as well. In
Section 3, we present CSL{’IDw, and show that
the counter-example for CSLoIDw (i.e. ls(z,y)
IsX(z,v)) is cut-free provable in CSL{IDw. Then,
we show that CSLYIDw still fails to satisfy cut-
elimination by presenting the cut-free unprovabil-
ity of the counter-example 1s(z,y) F sl(z,y). Sec-
tion 5 concludes the paper with a discussion on
future work.

Related Work:
been much work on meta-theoretic properties of

As remarked above, there has

cyclic proof systems for various logics [3]-[5][7]-[9]
[11][12][14][16].
cuss the cut-elimination property for cyclic proof

Among them, some papers dis-
systems. The paper [12] considers a cyclic proof
system for uMALL (linear logic with least and
greatest fixed-point operators), and discusses non-
preservability of the cyclic structure by the ordi-
nary cut-elimination procedure. It discusses the
behavior of cut-elimination procedure, but our pa-
per considers admissibility of the cut rule. The pa-
per [11] proposes a sequent-style system for Kleene
algebra, and shows the cut rule is not admissible in
the system.

In the context of (semi-)automated deduction,
several cyclic-proof-based theorem provers for sep-
aration logic have been proposed [8][10][13][17][18].
Some of them allow restricted forms of cut. For
instance, SLEEK [13] allows cuts, but only against
user-provided lemmas. The theorem provers pro-
posed in [10][17][18] synthesize induction hypothe-
ses during the proof search by following a certain
set of rules. They can be seen as a kind of a cyclic
proof system in which the cuts are restricted to be
only against the synthesized induction hypotheses.
None of these papers investigate the effect of having
or not having the cut rule nor clarify whether their
restricted forms of cuts are enough or not enough
for theorem proving purpose.

2 Simple separation logic SL

This section defines a simple fragment of sepa-
ration logic (SLo), which has the minimum neces-
sary connectives — and * to define our counter-
examples.

2.1 Syntax of SLo

We assume a finite set {Pi, ..., Pk} of inductive
predicates. Each inductive predicate P has its arity
ar(P). Termsof SLo (denoted by ¢, u, . .

variables (x,y,z -

.) consist of
) and nil. We sometimes write
redifz appears in z.

Formulas (denoted by A, B, C,...) of SLg are de-
fined as follows.

A=t u| P(_t>) | Ax A,

where the length of 7 s ar(P).
write A(7) to denote variables occurring in A ex-

We sometimes
plicitly. We implicitly suppose associativity and
commutativity of the separating conjunction s,
that is, Ax B=B+ A and (AxB)xC=Ax(Bx(C).

The set of free variables in A is written as FV(A).
The union of FV(A4:),...,FV(4,) is written as
FV(44,...,Ay).

A substitution (denoted by €) has the form z; :=
t1,...,xk := tg, where z; and z; are different vari-
ables if i # j.
ing each z; by ¢t; (1 = 1,...,k) in A is written by
A[ibl = tl, e

Each inductive predicate P has its own definition,

The formula obtained by replac-
, T =).

which is given as follows:
P(Z):= A1 |...| As
FEach A; is called a definition clause of P. Intu-
itively, this means that P(?) is defined by the
., As. We note that variables
of A; not appearing in 7 are implicitly existen-
tially quantified. Namely, P(?) is defined by
JP AT,) V.. VIPLA(T, P2).
In this paper we will consider several kinds of list

disjunction of Ay, ..

predicates s, sl, 1sO, IsE and 1sX given below.
Definition 1. The definitions of 1s, sl, 1sO, IsE,
and IsX are given as follows.

Is(z,y) :=x—y |z zx1s(z,y)

sl(z,y) =z —y|sl(z,2)xz—y

1sO(z,y) :=x— y |z — 2z x1sE(z,y)

IsE(z,y) := z +— 2z x1sO(z,y)

IsX(z,y) :=1sO(z, y) | IsE(z, y)

Both Is(z,y) and sl(z,y) mean singly-linked list

42 N R AR

segments of positive lengths from x to y. The for-
mer and the latter predicates represent list seg-
ments constructed by adding cells repeatedly to the
head position and the tail position, respectively.
1sO(z,y) and IsE(z,y) mean list segments with
odd and positive even lengths, respectively. They
are defined by a mutual induction. 1sX(z,y) means
list segments with odd or positive even length, that
is, list segments of positive length. The formu-
las 1s(z, y), sl(z,y), and 1sX(z,y) are semantically
equivalent (see Lemma 2).

2.2 Semantics of SLg

Let N be the set of natural numbers. A store
(denoted by s) is a function from variables to N.
It is extended to a function on terms by s(nil) = 0.
We define update s[z1 := a1,...,Zn := an] of s by
the store s’ such that s'(z;) = a; and s'(y) = s(y)
if y € {z1,...,2n}. It is sometimes abbreviated
by s[Z := d]. A heap (denoted by h) is a fi-
nite partial function from N \ {0} to N. The do-
main of h is written by dom(h). We write hi + ho
for disjoint union of h; and hsz, namely, it is de-
fined when dom(hi) and dom(h1) are disjoint, and
(h1 + hz)(a) = hl(a) if a € dOm(hl) for i = 1,2.
We sometimes write [a1 — b1,...,am > bp] for
the heap h defined by dom(h) = {a1,..
hag) = b; (1< j < m).

A pair (s, h) is called a heap model.

.,am} and

Definition 2 (Interpretation of formulas). The in-
terpretation of a formula A in (s, h) (denoted by
s,h = A) is inductively defined as follows.

e sshiEt—u
L b= [s(t) — s(u)],
s,h = PO(T)
£ pever,
s, h = P (7))
&L (7 =By h = AP /BT, T)

N
b

for some b and definition clause A of P,

s,h = P(T)
&L s,h E P(m)(?) for some m,
s,h|E A1 *x Asg
(g s,h1 = Ay and s, he |E As

for some hi and h2 such that h = hy + ha,
where P(™) is an auxiliary notation for defining
s,h E P(?) and A[P(™ /?] is the formula ob-

tained by replacing each P; by Pi(m).

Intuitively P™ corresponds the m-time un-

folding of P, that is, P(0>(7) means L and
P D (Z) means Vi, EIE)AZ-[P("S/?](?,),
where Ai, ..., As are the definition clauses of P.

The following lemma explains how the above def-
This re-

sult will be used in the proof of Theorem 2 and

inition for inductive predicates works.

Lemma 5.
Lemma 1. Let h, be [a0 +— ai,a1 +
az,...,an-1 — ay] for n > 1. That is, h, forms

a singly-linked list of length n. Take a store s
that satisfies s(z) = ao and s(y) = an. Then we
have s, hy,, |= 1s(™ (z,y) by induction on n. Hence
s, hn = 1s(z,y) holds for any n > 1. We can also
show s, h, |=sl(z,y) and s, hy = 1sX(z,y).

We say A and B are logically equivalent if for
any heap model (s,h), s,h = A and s,h = B are
equivalent. Then we have the following claim.
Lemma 2. Is(z,y), sl(z,y), and 1sX(z,y) are log-
ically equivalent.

3 Cyeclic proof system CSLyIDw

This subsection defines a cyclic proof system

CSLoIDw for SLg, which handles single-conclusion
sequents defined as follows.
Definition 3 (Single-conclusion sequents of SLo).
A sequent of SLo has the form A - B. The formula
on the left-hand side and the right-hand side of a
sequent are called its antecedent and succedent (or
conclusion), respectively. A sequent A F B is called
valid if, for any heap model (s, h), s, h |E A implies
s,h = B.

The following subsections give several infer-
ence rules of the form
S,S51,...,5n.
above the horizontal line are called its premises,

n .
with sequents
For each inference rule, sequents

and a sequent below the line is called its conclu-
S10M.

In order to avoid confusion, we will use
the word “conclusion” only for inference rules,
and the words “single-conclusion” and “multiple-
conclusion” (they are used for sequents) are never

shortened into the word “conclusion”.

3.1 The proof system CSLyIDw

The derivation rules of CSLgoIDw consist of the
basic rules and the unfolding rules. The basic rules
are the following three rules:

Vol. 37 No. 1 Feb. 2020 43

A}—A(Id)
AFC C’I—B(Cut) AiFB1 Ak B> %)
AFB A1 % As F By * By

The rule (Id) is the identity rule, the rule (Cut) is
the cut-rule in the sequent calculus. The rule ()
combines two premises into one with the separat-
ing conjunction *, that is, it says if A; implies By
and Az implies B2, then B; * Bs is obtained from
A1 * Ao, since A1 and Az independently implies B
and Bas, respectively.

The unfolding rules consist of (UL) and (UR). In
the following, we assume P(7) := A; | ... | A, is
the definition of P.

BF AT,) (UR)
)

BrP(T
Bx AT,) FC Bx AT, 7)) FC
BxP(T)FC

. Z are fresh.

(UL)

where z_f, ..
Example 1. The unfolding rules for ls, sl, 1sO,
IsE and 1sX are as follows.

(1) Rules for Is:

BFtrs Bttty x1s(ty,u)
Hria . (UR) (UR)
B F1s(t, u) B F1s(t, u)

Bxt—ubC Bxtr— zxls(z,u)-C

(UL)
Bxls(t,u) F C
(2) Rules for sl:

Brt—su Bl sl(t,u) xur — u
——F——— (UR UR
B Fsl(t, u) (UR) B sl(t,u) (UR)

Bxt—ubC Bxslt,z)xz—ukC

(UL)
Bxsl(t,u) F C
(3) Rules for 1sO:

BFitr—s BbFt—t1 %1sE(t1,u)
S (UR) (UR)
B F 1sO(t, u) B F1sO(t, u)

Bxt—ubC Bxt— zxlsE(z,u) - C

(UL)

B x1sO(t,u) + C

(4) Rules for IsE:

BtEt t1 %1sO(t1, u)
B+ 1sE(t,u)

(UR)

Bxt+— zx1sO(z,u) - C

L
Bx1sE(t,u) - C (UL)
(5) Rules for 1sX:
B F1sO(t,u) (UR) B F 1sE(t,u) (UR)
B F1sX(t,u) B F1sX(t,u)

Bx1sO(t,u) - C Bx*1sE(t,u) - C
Bx1sX(t,u) H C

(UL)

We define a cyclic proof of CSLoIDw in a similar
way to [6][7].
Definition 4 (Derivation tree). A derivation tree
(denoted by D) of a sequent e is a finite tree struc-
ture whose nodes are labeled by sequents of SLg,
the label of the root node is e, and a node labeled
with €’ has children labeled with e}, ..
there is an instance €

., €} when

o= ¢ of an inference rule
of CSLoIDw. A leaf node which is the conclusion of
the rule (Id) is called closed. An open (not closed)
leaf is called a bud. A companion for a bud e is an
occurrence of a sequent e. in D of which e is an
substitution instance, namely, e, = e.[f] for some
0.

In a derivation tree, if e appears as a conclusion
of a rule instance and €’ is a premise of the rule,
e’ is called a premise of e. In this case, e is called
a parent of ¢’. Similarly we also use the usual ter-
minology of the tree structure such as child and
descendant.

Definition 5 (Pre-proof). A pre-proof of e is given
by (D, R), where D is a derivation tree of e and R
is a function assigning a companion to every bud of
D. A proof-graph G(P) of a pre-proof P = (D, R)
is a graph structure D with additional edges from
buds to their companions assigned by R. A path in
P is a path in G(P).

Definition 6 (Trace). Let (e;)icw be an infinite
path in P. A trace following (e;):icw is a sequence
of (Cs)icw such that each C; is a subformula occur-
rence of the form P(_t)) in the antecedent of e;, and
satisfies the following conditions:

(a) if e; is the conclusion of (UL) in D, then either
C; = Cit1 or C; is unfolded in the rule instance
and Cy1 appears as a subformula of the unfolding
result. In the latter case, ¢ is called a progressing
point of the trace;

(b) if e; is the conclusion of a rule other than (UL),

44 N R AR

z = zx1sO(z,y) F x — 2 x1sO(z,y)

z— zx1sE(z,y) -z — 2z xIsE(z,y)

UR UR
z+— zx1sO0(z,y) - IsE(z,y) UR() z — zx1sE(z,y) - 1sO(z,y) UR()
z — zx1s0(z,y) F 1sX(z,y) (UR) z — zx1sE(z,y) F 1sX(z,y) EUL))

z— zx1sX(z,y) F 1sX(z,y)
(1) Is(z,y) - 1sX(2,y) (1)

m r—zkx— 2z

z+— yt1sO(z,y)

) z— zxls(z,y) ko — zx1sX(z,y)

z — z*x1sX(z,y) F 1sX(z,y)

x =yt 1sX(z,y)

x> zxls(z,y) F 1sX(z,y)

(Cut)

(1) Is(z,y) F 1sX(z,y)

(UL)

Fig. 1 Cyclic proof of Is(z,y) - 1sX(z,y) (for Proposition 1)

then C;4+1 is the corresponding subformula occur-
rence in e;4+1, which satisfies C; 11 =Cj;

(c) if e; is a bud and e;+1[0] = e; for some substitu-
tion @, then C;y; is the corresponding subformula
occurrence in e;11, which satisfies Ci+1[0]=C;.
Definition 7 (Cyclic proof). Let P be a pre-proof
of e. P is called a cyclic proof of e if it satisfies the
global trace condition: for any infinite path (e;)icw
in P, there exists a trace (C})iecw following the path
that has infinitely many progressing points.

The global trace condition is a sufficient condi-
tion for soundness, that is, we have the following
theorem. This theorem is shown by the similar way
to [6]-[8].

Theorem 1 (Soundness of CSLoIDw). If A+ B
has a cyclic proof P of CSLoIDw, then all sequents
i P are valid. In particular, A+ B is valid.

In the following subsection we will prove that
Is(z,y) + 1sX(z,y) is a counter-example for the
We first
show that this example has a cyclic proof with
(Cut).

Proposition 1. (1) z — z *1sX(z,y) F IsX(z,y)
1s cut-free provable in CSLoIDw.

(2) 1s(z,y) F 1sX(z,y) is provable in CSLoIDw
with (Cut).

cut-elimination property of CSLoIDw.

Proof. (1) is shown by the upper proof of Fig 1.
The lower one is a pre-proof by putting the upper
proof at the node labeled by (1) and by connecting
the bud Is(z,y) F 1sX(z,y) marked by () to the
entailment with the same mark at the root position.
The pre-proof is a cyclic proof that shows (2), since
the only infinite path which is created from the bud-
companion has an infinitely progressing trace (the
sequence of the underlined predicates). O

3.2 Counter-example for cut-elimination

of CSLoIDw

We define f,, A by the number of — in A. We
also define f (A F B) by i A.

Next theorem is our first main result, namely, the
cut-elimination property fails in CSLoIDw.
Theorem 2. The sequent 1s(z,y) + 1sX(z,y) is
not cut-free provable in CSLoIDw.

Proof. Suppose that 1s(z,y) F 1sX(z,y) has a cut-
free cyclic proof (D,R). We will show contradic-
tion.

We construct a finite path e = (eg, e1,...,em) of
D such that each e; has the form (up to permuta-
tion of)

20 21K K 21 2 ls(zkj,w) F 1sX (20, w)
for some k; and pairwise distinct variables
20, .-+, 25, w. Let eo be Is(z,y) F IsX(z,y) at
the root position. Assume that eog,...,e; are al-
ready defined. If e; is the conclusion of a (UL),
then define e; 1 by the unique premise of the rule
instance that contains the ls-predicate in the an-
tecedent. We note that e;y1 has the required form
and f#,e; < fsejr1. Otherwise finish constructing
the path e.
Claim 1.

tecedent of e contains the ls-predicate, then e € e

For any sequent e in D, if the an-

or e is a descendant of e,.

This claim is shown by induction on the height
ht(e), namely the length of the path from the root
node to e, of e in D. If ht(e) =0, then e = e € e.
We show the case ht(e) > 0. Assume e ¢ e. We
show that e is a descendant of e,,. In this case, e is
a premise of an instance of a rule (r), which is not
(Cut). Let €’ be the parent of e, that is the conclu-
sion of the rule instance. Then the antecedent of
e’ contains the ls-predicate. Hence e’ € e or €’ is
a descendant of e, by the induction hypothesis. If

Vol. 37 No. 1 Feb. 2020 45

the latter case holds, we have the expected result.

Otherwise, ¢/ must be e, since e contains 1s, €’ € e

and e ¢ e. Thus e is a descendant of e,,. Hence we

have Claim 1.

Claim 2.
We show this claim. Assume that e,, is a bud.

em 1s not a bud.

Then the antecedent of the companion e contains
the ls-predicate. By Claim 1, we have e € e
since e, is a bud. Hence there is an infinite path
of the cyclic proof (D,R). By the

global trace condition, there is a trace following the

€y m,y €y ..

path with infinitely many progressing points. This
means fe < fiem < fiye. Hence we have contra-
diction. Thus we obtain Claim 2.

By Claim 2, e,, is a conclusion of an instance of
arule (r). Then (r) must be (UR) by case analysis
of the inference rules. Let é be the unique child of
em in D. The form of € is either

(a) 20 V> 21 % ... % 2, —1 ©> 2k, *1s(z,,,w) F

1sO(zo, w), or
(b) 2o = 21 %...% 2k, —1 — 2k, *1s(zk,,,w) F
IsE(zo, w).
Consider the case (a). Take a store s; such that
s1(zi) =141 and s1(w) = 2%k, + 1. Define hi by
dom(h1) ={1,2,...,2%km } and h1(¢) = i+1. Then
s1,hi |E 20— 21 % ..k 2, -1 > 2k, * 182k, , W)
and s, hy = 1sO(z0,w). Hence (a) is invalid. We
can also show that (b) is invalid by taking s2 such
that s2(z;) = ¢+ 1 and s2(w) = 2 % kp + 2, and
defining he by dom(h2) = {1,2,...,2 % kn, + 1}
and ho(i) = i + 1.
contradicts the soundness theorem. Hence we con-

Therefore € is invalid. This

clude that 1s(x, y) F 1sX(z, y) is not cut-free prov-
able. O

By combining proposition 1 and theorem 2, we
can obtain our first main result.

Corollary 1. The cyclic proof system CSLolIDw
does not enjoy the cut-elimination property.

We note that our CSLoIDw is designed as sim-
ple as possible in order to clarify the essence of our
discussion. The above corollary can be extended
easily to cyclic proof systems (of single-conclusion
sequents) that are extensions of CSLoIDw with
other connectives whose inference rules guarantee
the subformula property.

3.3 Failure of Cut-elimination in Broth-

erston’s CADE2011-system

In this subsection we aim to demonstrate that
our proof technique in the previous subsection also
works for Brotherston’s CADE2011 paper [8]. The
readers may hope to extend our result in the pre-
vious subsection to Brotherston’s system as men-
tioned after Corollary 1. However we cannot do
it, since Brotherston’s system contains the empty
predicate emp, which is the unit of *. It requires
the inference rules that do not guarantee the subfor-
mula property (see the rules (EmpL’) and (EmpR’)
below). While the essence of the proof technique re-
mains the same, a small modification is necessary
to handle these inference rules.

We first extend SLo by adding emp, that is, the
formulas of the extended system SL’g are given as
follows:

A=t t|AxA| P(7)|emp
The interpretation of the empty predicate is given
as follows:

s,hi=emp <% dom(h) =0

Then we extend CSLoIDw by adding the follow-
ing derivation rules:

A-B A-B

At Bxemp (EmpR) empx*x A B (EmpL)

Al Bxemp , empx* A B ,

—arp (BweR) —p— (Bmpl)
(Unsat—)

z—uxz—u xAF B

We call this extended system CSL’gIDw.

The definitions of pre-proofs, traces, and cyclic
proofs of CSL’oIDw are given in the similar way to
those of CSLgIDw. The soundness theorem for this
extended system also holds.

Then we can show the similar claim to Theo-
rem 2.

Proposition 2. The sequent 1s(z,y) F 1sX(z,y)
is not cut-free provable in CSL’yIDw.

Proof (sketch). Suppose that Is(z,y) F 1sX(z,y)
has a cut-free cyclic proof (D, R). We construct a
finite path e = (e, €1, ..., em) of D such that each

e; has the form

*f;glzl — ziH*ls(zkj,w)*emf) = lsX(zO,w)*emﬁ

for some k; and pairwise distinct variables
205+ -5 2k;,w, and e is 1s(z,y) = 1sX(z,y) at the
root position. If e; is the conclusion of a (UL), de-

46 N R AR

fine ej+1 by the unique premise of e; which contains
Is. If e; is the conclusion of EmpL, EmpR, EmpL’,
or EmpR’, define e;11 by the unique premise. We
claim that #i,e; < fise;41 for any 5 < m, and, in
particular, fe; < f#iej+1 if e; is the conclusion
of a rule instance of (UL). Then we have the same
claims as Claim 1 and Claim 2 of Theorem 2. We
also have the following claim:
Claim 3 e,, is not the conclusion of a rule in-
stance of (Unsat—).
This claim is obtained by investigating that the an-
tecedents of e are satisfiable. Hence e,, cannot be
the conclusion of (Unsat—).

By using Claim 1, Claim 2, and Claim 3, we can
show the expected result in a similar way to the
proof of Theorem 2. O

We introduce an extended system CSLpIDw,
which is a variant of Brotherston’s system [8]. The
difference between these two systems is not essen-
tial: terms of the system in [8] are only variables.
The formulas of CSLpIDw are given as follows:

Au=tst| AxA|P(T) | emp
| t=t|t£t|t> ()| T|L|AVA

The derivation rules of CSLgIDw are those of
CSL’oIDw with the following rules:

Toars P arT (D g= G
t=uxt#uxAF B (Unsat=)
(Unsatﬁ))

t (u1,u2)*t|3> (uf,ub)* A+ B

A1 *BFC AxxBFC

(Al \/Az)*BFC (VL)
VR
AF (B VBy)+C ()(¢:1,2)

The following lemma shows that the above addi-
tional inference rules cannot be applied in proof-
search procedures of 1s(z, y) - 1sX(z, y).

Lemma 3. Let A and B be formulas of CSLpIDw
whose connectives and predicates are emp, *, —,
Is, 1sX, IsE, and 1sO. Assume A+ B has a cut-
free derivation tree of CSLplDw. Then all infer-
ence rules used in the derivation tree are those of
CSLyIDw.

This lemma can be shown by induction on the
derivation tree.

As the result of this subsection, we can show the
failure of cut-elimination in CSLpIDw.
Theorem 3 (Failure of cut-elimination in
CSLpIDw). CSLpIDw does not enjoy the cut-
elimination property.

Proof. Note that Is(z,y) F 1sX(z, y) can be shown
in CSLpIDw with (Cut), since CSLpIDw is an ex-
tension of CSLoIDw.
IsX(z,y) is not cut-free provable in CSLpIDw.

Then we show ls(z,y)

Assume that it has a cut-free cyclic proof of
CSLpIDw. Then the cyclic proof is also a proof
of CSL’gIDw since all inference rules are those of
CSL’gIDw by the previous lemma. Hence we have
contradiction by proposition 2. O

Remark 1. In [8], an automated prover for se-
quents (that do not contain nil) in CSLpIDw,
which is based on a proof-search procedure in
CSLgIDw, is proposed. Although the system con-
tains (Cut), the tool uses the rule for managing
basic properties about *, such as associativity, com-
mutativity, and unit of . Hence the prover cannot
find non-trivial cut-formulas (e.g. the cut-formula
x — zx1sX(z,y) used in the proof of Proposition 1)
during its proof-search procedure.

Recall that each sequent considered in this sec-
tion has a single-conclusion. It is the reason why
Is(z,y) F 1sX(z,y) works as a counter-example for
the cut-elimination, that is, we are forced to choose
either 1sO(z, y) or IsE(z, y) in unfolding 1sX(z, y)
This situa-
tion can be avoided if we consider sequents with

on the right-hand side of a sequent.

multiple-conclusions.

4 Cyclic proof system CSLéWIDw for
multiple-conclusion SLg

This section presents the second cyclic proof
system CSL}IDw for sequents with multiple-
conclusions defined below.

Let A be a multiset of formulas. We sometimes
write Bi, Ba,...,B, instead of {B1,Ba,...,Bn}.
We also write A, B for AU {B}. We define A x A’
by {BxB' | B€ A and B’ € A’}. We also define
s,h =\ A by 3B € A(s,h = B).

Definition 8 (Multiple-conclusion sequents of

Vol. 37 No. 1 Feb. 2020 47

SLo). The multiple-conclusion sequents of SLo have
the form A+ A. A sequent A F A is valid if, for
any (s,h), s,h = A implies s, h = \/ A.

4.1 Cyclic proof system CSLYIDw for
multiple-conclusion sequents
The derivation rules of CSLYIDw consists of the
basic rules and the unfolding rules. The basic rules
of CSLYIDw are given as follows.

AF A, C CFA,

ara 1 A ALA, (Cud)
AEA MEds
Al*AQ}—Al*AQ
AL A AFA,B,B
Arap (WH arap (O

The unfolding rules (UL) and (UR) of CSL{TDw
are straightforward extension of those of CSLoIDw.
We assume that P(Z) := A1 | ... | A, is the defi-

nition of P. N
BFA,CxA;j(t,)

UR
BFA,CxP(T) (UR)
Bx A (T, 7)) FA Bx AT, 7)) FA

BxP(T)FA (L)
where z—f, RN Z, are fresh.

The pre-proofs, traces, and cyclic proofs of
CSLYIDw are defined similarly to those of
CSLolDw
Remark 2. The main difference between CSLoIDw
and CSLYIDw is the structural rules, namely
the contraction rule (Ctr) and the weakening rule
(Wk).
structure and strengthen the provability of the

These rules allow to change whole proof

proof system. As we will see in the next proposi-
tion, the previous counter-example does not work in
the current system. Hence we need a new counter-
example and a new proof technique that can cap-
ture the changed proof structure.

The soundness theorem of CSL}IDw is also
shown in a similar way to that of CSLoIDw:
Theorem 4 (Soundness of CSLYTDw). If A A
has a cyclic proof P of CSLY IDw, then all sequents
i P are valid. In particular, A+ A is valid.

The previous example 1s(z,y) F 1sX(z, y) is cut-
free provable in the current system.

Proposition 3. 1s(z,y) F 1sX(z,y) is cut-free
provable in CSLY IDw.

Proof. The proof figure given in Fig 2 is a cut-
free pre-proof of Is(z,y) F 1sX(z,y) in CSLY IDw.
Note that the two entailments marked by (}) are in
a bud-companion relation. The only infinite path
in this pre-proof contains an infinitely progressing
trace (the sequence of the underlined predicates).
Hence this pre-proof is a cyclic proof, since it sat-
isfies the global trace condition. O

This proposition shows that 1s(z,y) F 1sX(z, y)
does not work as a counter-example for the cut-
elimination property of CSL{IDw. However
we still have another counter-example 1s(z,y) +
sl(z,y). We first show that this sequent is prov-
able in CSLY IDw.

Proposition 4. (1) z — z xsl(z,y) F sl(z,y) is
(cut-free) provable in CSLY IDw.

(2) 1s(x,y) & sl(x,y) is provable in CSLY IDw

with (Cut).

Proof. The proof figures in Fig 3 show both (1) and
(2). The first claim is obtained by the upper pre-
proof, which is a cyclic proof since it satisfies the
global trace condition. The lower figure becomes a
pre-proof by putting the upper one at the position
marked by (1). We can easily check the pre-proof
satisfies the global trace condition. Hence (2) is
shown, since 1s(z,y) F sl(z,y) has a cyclic proof
with (Cut). O

4.2 Counter-example for cut-elimination
of CSLYIDw
This subsection shows that the cut-elimination

property fails in CSL3!

IDw. The main result of
this section is the following theorem.
Theorem 5. The sequent ls(x,y) b sl(z,y) is not
cut-free provable in CSLY IDw.
Remark 3. In the proof of Theorem 2, a contra-
diction appears at the point when (UR) is applied
to the unique succedent. In the current case, how-
ever, this idea does not work, since, at the point
that (UR) is used, a formula before (UR) may re-
main in the succedent part because of contraction.
Our basic idea for proving Theorem 5 is as fol-
lows: focusing on the path of a cyclic proof that
contains both lIs in the antecedent part and sl in
the succedent part; and analyzing the form of se-
quents on the path. To do this, we prepare some
notions and show their properties.
In the following we write sk, A; for Agx*---xAy,.

48 N R AR

r—ykx—y

r—zFr— 2

(1) 1s(z,y) - 1sE(2,9),1s0(z, y)

co 500 (U T erls(y) o 2B g 24150y)
(Wk) (UR x 2)
z — yF1sO(x,y), IsE(z, y) z — zx1s(z,y) F 1sO(z,y), IsE(z, y)
(1) 15(z,9) - 150(x, 3), 5E(z,) L)
UR x 2
(o) X () 15X () (0

Is(z,y) F 1sX(z, y)

Fig. 2 Cut-free cyclic proof of Is(z,y) - 1sX(z,y) (for Proposition 3)

rzxz— Yyl zxz—y

() z = z*sl(z,w) F sl(z,w)

wYyEw—y

(UR)

= zxzybslz,z)xz—y (UR)

x> zxsl(z,w) xw—yksl(z,w) xw—y

x> zxz—ybsl(z,y)

UR
x> zxsl(z,w) xw— yFsl(z,y) (UR)

(f) z — zxsl(z,y) F sl(z,y)

(1) Is(z,9) Fsl(z,y) 1

r—zFr— 2z

UL)

r—=yFr—y

x> zx1s(z,y) Fx— 2 xsl(z,y)

z — z*s8l(z,y) b sl(z,y)

z—ytsl(z,y) (UR)

x> zx1s(z,y) b sl(z,y)

(Cut)

(1) Is(z,y) - sl(z,y)

(UL)

Fig. 3 Cyclic proof of Is(z,y) I sl(z,y) (for Proposition 4)

Definition 9 (Ls-form). An SLg formula is called
a connected Ls-form from x to y, if it has the form
* o 2 > zip1 18 (20, y), 20 is z, and 7,y are pair-
wise distinct variables. A formula is called an Ls-
form from x to y, if it is obtained by removing some
points-to predicates from a connected Ls-form.

We sometimes omit “from x to y” if it is apparent
from the context.
Definition 10 (Sl-form). A formula is called a
connected Sl-form from x to y, if it has the form
sl(z, zn) * *?;01214_1 — z; with zo = y. A formula
is called an Sl-form from x to y, if it is obtained
by removing some points-to predicates from a con-
nected Sl-form. A formula is called a semi Si-form,
if it is an Sl-form or contains only .

A finite multiset A of formulas is called a semi
Si-form, if all elements of A are semi Sl-form.

The following lemma is easily shown from the
definition.
Lemma 4. If A is an Ls-form from x to y, then
A is satisfiable.
Lemma 5. Assume that A is an Ls-form from x
toy, A is a semi Sl-form from x to y, and A+ A
s valid. Then we have the following claims.

(1) A is a connected Ls-form.

(2) sl(z,y) is in A.

Proof. Suppose the assumption. Since A is an Ls-
form from z to y, there is a connected Ls-form
*?;Olzi — zi+1 * 1s(zn,y), where zo = = and 7,3/
Then A can be written as
,n—1}.

are pairwise distinct.
X;er2i = zit1%18(zn, y), where I C {0,. ..
Let k = |[FV(A, A)|. Define s and h by:

s(z;) =i+ 1forie{0,1,...,n},

s(y) =n+k+2, and

s(w)y=0ifw g 7,y.

dom(h)={i+1|iel}U{n+1,...,n+k+1},

and h(m) =m + 1 for m € dom(h).

Then |dom(h)| = |I|+k+1and n+k+2 &
dom(h). We also have s,h = A. Hence s,h = B
for some B € A since A F A is valid by the as-
sumption.

We will now show that B is an Sl-form. Suppose
that B is not an Sl-form. By the assumption, B
has the form % ;z; = 2} and s,h = B. Then
we obtain contradiction, since |dom(h)| = |J| <
[FV(A)| < k < |dom(h)|. Therefore B is an Sl-
form.

(1) Suppose that A is not a connected Ls-form.
Then the set {0,1,...,n—1}\T is not empty. Take
the smallest element 7g of this set. We will show

Vol. 37 No. 1 Feb. 2020 49

contradiction by the case analysis of io.

We show the case i9 = 0. This case means
x = z0 € FV(A) since A does not contain zg — 21.
Then 1 = s(z0) € dom(h). Recall the above B.
It satisfies s, h = B and contains sl(z, 2') since B
is an Sl-form. Then we have 1 = s(z) € dom(h).
Hence we have contradiction.

We show the case i9 > 0. This case we have
s, h b= k20 25 =z kK ez = 2 #1820,),
where I’ = I\ {0,...,i0 — 1} and iy ¢ I'. Hence
we have ig + k + 1 < |dom(h)|, since {1,...,i0} U
{n+1,...,n+k+1} C dom(h). Now the Sl-form
B has the form sl(z, 27,) * % ;2j41 = 25. Thus
there exist h1 and hs such that h = hi+ha, s,h1 &=
sl(x, z,) and s, ha |= % ¢ ;2511 > 2} By the defi-
nition of h and ig, we have dom(hy) C {1,...,i0}.
Hence we have |dom(hi)] < io. We also have
|dom(hz)| < |FV(A)| < k. Therefore we obtain
io +k+1 < |dom(h)| = |dom(hi)|+ |dom(hs2)| <
19 + k. Contradiction.

Finally we conclude that A is a connected Ls-
form. Hence (1) is shown.

(2) Since A is a connected Ls-form by (1), we
have I = {0,...,n — 1}. Hence we also have
dom(h) ={1,...,n+ k+ 1}. Recall that s,h = B
and B is an Sl-form. We show B is sl(z,y) by
Then B has the form sl(z,2,) *
*jes2i41 Fr 25 with J # 0. Thus there exist hy
and he such that h = hi + ha, s,h1 | sl(z, z,)
and s, ha |= % ¢ ;2511 + 2;. Note that dom(h:) =
{1,...,8(2;) — 1} and dom(h2) = {s(21,),.--,n +
k+1}. Moreover s(z,,) <n+k+2 = s(y) since J
is not empty. Hence z,, € E4 by the definition of s
and z;, # y, We have |[dom(h1)| = s(z5,) —1 < n
and |dom(h2)| < |FV(A)| < k. From this, we ob-
tain n+k+1 = |[dom(h)| = |dom(h1)|+|dom(h2)| <
n+ k. This is a contradiction. Therefore sl(x,y) =
BeA. O

contradiction.

Definition 11 (L-form). A sequent A F A is called
an L-form from x to y if A is an Ls-form from z to
y and A is a semi Sl-form from x to y.

We define ., (e) for a sequent e of CSL}IDw in
the similar way to one of CSLoIDw.
Lemma 6. Let P be a cul-free cyclic proof in
CSLY IDw. Assume that an L-form e from x to
y appears in P as the consequence of an infer-
ence rule (r). Then there is a unique premise ¢
of the rule such that €' is an L-form. Moreover,

s (e) < Hs () if (r) is (UL), and f.(e) = s ()

otherwise.

Proof. This lemma is shown by case analysis of the
rule. Let A and A be the antecedent and the succe-
dent of e, respectively.

The rule (Id) is not the case since, by the defini-
tion of L-form, A contains the ls-predicate, and A
does not contain the Is-predicate.

The rule (Cut) is not the case since P is cut-free.

The cases of (Wk) and (Ctr) are immediately
shown.

The case of (UR). By the premise e has the form
AtE Ay, Bxsl(z,z), and B xsl(z, z) is an Sl-form.
The unique premise ¢’ of e is either A - Ay, Bxx
wkxw > zor A Ay, Bxsl(z,w)*w+— 2. In each
case, €' is an L-form, since both Bxz — w*w — 2
and B x sl(z,z) are semi Sl-forms. We also have
b (e) = b ().

The case of (UL). By the premise e has the form
A1 x1s(z,y) F A, and A; = 1s(z,y) is an Ls-form.
Thus e has a unique premise whose antecedent con-
tains the Is-predicate. Let €’ be the premise. Then
€’ has the form Ay*z — 2'xIs(2’,y) = A, where 2’ is
a fresh variable. We note that Aqxz — 2" x1s(2',y)
is an Ls-form since A; *1s(z,y) is an Ls-form and
Z' is fresh. Therefore ¢’ is an L-form. We also have
fea(e) < B ().

The case of (x). Recall that e contains only one
Hence there is a unique premise of
e that contains the ls-predicate. Let e’ be the
Let A’ and A’ be the antecedent and
succedent of /. Then A’ is an Ls-form. Since A is

Is-predicate.
premise.

a semi Sl-form, A’ is also a semi Sl-form. There-
fore ¢’ is an L-form. Note that all — of A must
be contained in A’. Otherwise A’ is not a con-
nected Ls-form. This contradicts Lemma 5. Hence

we have f, (e) = #(¢). O

Lemma 7. Suppose that there is a cut-free cyclic
proof P of 1s(z,y) F sl(z,y) in CSLY' IDw. Then its
graph G(P) contains an infinite path (€;)icw such
that (a) eo is 1s(z,y) b sl(z,y), and (b) each e; is
an L-form.

Proof. Let D be the underlying derivation tree of
P. We inductively define a finite path eg,e1,..., e,
of D. Let ey be Is(z,y) F sl(z,y) at the root po-
sition of D. Suppose that e, ..
defined.

.,ex are already
If er is a bud, then finish making the

50 N R AR

(eq—1) : k{Zgmi > ziy1 *1s(zg—1,y) F sl(z,y)

(em+1) : *ﬁglxi = Tigtl * Tm > Tmt1 * 18(Tmt1,) F sl(z, y)

(em) : *;’;lei = Zit1 *x 1s(xm, y) b sl(z, y)

(UL)

(ep) = (eq) 1 ¥V gxi > i1 x1s(p, y) - sl(z,y)

(e1) : mo > x1 * is(xl,y) Fsl(z,y)

(eo) : 1s(zm,y) F sl(z,y)

(UL)

In the above proof figure, x = ¢ and each e; is the name of the corresponding sequent, the sequence (¢;);c. is a

path, the sequence of the underlined list predicates forms an infinite progress trace that follows the path, and eq is

the companion of the bud eq_1.

Fig. 4 Proof of Theorem 5

path with n = k. Otherwise there exists a unique
premise e’ of e; by Lemma 6 such that e’ is an
Note that
this construction successfully terminates, since any

L-form. Then we define exy1 by €.

L-form cannot be the conclusion of (Id) and the
number of sequents in D is finite.

We claim that all L-forms of D are on the path,
since the premise e’ of ey (k < n) other than ejy1
does not contain the ls-predicate and all sequents
of the subtree of D starting from e” do not contain
the Is-predicate. Hence the companion of the bud
en appears in the path (e;)i<n.

Finally we obtain the required infinite path
(ei)icw of G(P) by defining ent1 = ep, where ep
is the companion of e, . O

Finally we show Theorem 5. The proof is done
by combining Lemmas 6 and 7. The proof figure
given in Fig 4 explains the situation of the following
proof.

Proof of Theorem 5. Suppose that there is a cut-
free cyclic proof P of Is(z,y) F
CSLYIDw. We will show a contradiction. By
Lemma 7, there is an infinite path (e;)ic. of G(P)
such that e is 1s(z,y) F sl(z,y) and each e; is an

sl(z,y) in

L-form. By the global trace condition, there ex-
ist m € w and an infinite progressing trace (7;)i>m
that follows the infinite path (€;);>m. By the con-
struction of the path, the bud appears infinitely
many times in the path. Let e, and e, be the first
and the second occurrences of the bud in the path.
Then there is at least one progressing point be-

tween 7, and 74. Hence, we have contradiction since
s (ep) < #5(eq) = - (ep) by Lemma 6. Therefore
there is no cut-free cyclic proof of Is(z,y) F sl(z, y)
in CSLY IDw. O

By combining Proposition 4 and Theorem 5, we
can obtain our second main result.
Corollary 2. The cyclic proof system CSL{ IDw
does not enjoy the cut-elimination property.

5 Conclusion and future work

In this paper, we have proved that cut-
elimination fails in cyclic proof systems for separa-
tion logic. We have shown the failure by presenting
counter-example sequents that can be proven with
cuts but not without cuts. The counter-example se-
quents are reasonably simple formulas about singly-
linked lists, therefore leading one to believe that
some form of cuts is necessary for practical uses of
cyclic proofs in separation logic. Because it is non-
trivial to infer arbitrary cut formulas in general,
we envisage automatic provers to include restricted
forms of cuts that are suitable for practical proof
searches. For instance, the induction hypothesis
synthesis pattern employed in Chu et al. [10] may
be a reasonable approach to this.

As future work, we plan to investigate the power
of various strategies used in cyclic-proof-based
provers that can be characterized as restricted
forms of cuts. For instance, the approach by Chu
et al. [10] can be seen as a cyclic proof system with
cuts restricted to only those against buds. An open

Vol. 37 No. 1 Feb. 2020 51

question that seems worth investigating is whether
all sequents provable in cyclic proof systems are
provable with cuts only against buds.

As another line of future work, we would like
to investigate whether the cut-elimination prop-
erty can be recovered by restricting the usage of
inductive definitions. Recall that our counter-
examples contain multiple inductive definitions of
the same singly-linked list data structure. Perhaps
cut-elimination can be recovered if such a situation
is avoided.

Finally, we would like to investigate whether cut-
elimination fails or not in cyclic proof systems for
logics different from separation logic, such as first-
order logic and bunched implication logic [6][7]. An
important difference between the cyclic proof sys-
tems for separation logic in this paper and those
in [6][7] is the existence of contraction and weaken-
ing on antecedents, which precludes a direct appli-
cation of the proof technique of this paper.

Acknowledgments. We wish to thank James
Brotherston for valuable discussions about cyclic
We also thank the anonymous refer-
ees for their helpful comments. This work is
partially supported by JSPS KAKENHI Grant
Numbers JP16H05856, JP17H01720, JP18K11161,
JP17HO01723, JP18K19787, and by JSPS Core-to-
Core Program (A. Advanced Research Networks).

proofs.

References

[1] Berdine, J., Calcagno, C., O’'Hearn, P. W. : A
Decidable Fragment of Separation Logic, in 24th In-
ternational Conference of Foundations of Software
Technology and Theoretical Computer Science, Lo-
daya, K. and Mahajan, M. (eds.), Lecture Notes
in Computer Science 3328, Springer-Verlag, 2004,
pp. 97-109.

[2] Berdine, J., Calcagno, C., and O’Hearn, P. W. :
Symbolic Execution with Separation Logic, in Third
Asian Symposium of Programming Languages and
Systems (APLAS ’05), Yi, K. (eds.), Lecture Notes
in Computer Science 3780, Springer-Verlag, 2005,
pp- 52-68.

[3] Berardi, S. and Tatsuta, M. : Classical Sys-
tem of Martin-Lof’s Inductive definitions is not
equivalent to cyclic proof system, in 20th Interna-
tional Conference on Foundations of Software Sci-
ence and Computation Structures (FoSSaCS ’17),
EsparzaAndrzej, J. and Murawski, S. (eds.), Lecture
Notes in Computer Science 10203, Springer-Verlag,
2017, pp. 301-317.

[4] Berardi, S. and Tatsuta, M. : Equivalence of
inductive definitions and cyclic proofs under arith-
metic, in 32nd Annual IEEE Symposium on Logic
in Computer Science (LICS ’17), Dawar, A. and
Grédel, E. (eds.), ACM Press, 2017, pp. 1-12.

[5] Brotherston, J.: Sequent calculus proof systems
for inductive definitions, Ph.D thesis, Edinburgh
University, 2006.

[6] Brotherston, J. :
ing in the Logic of Bunched Implications, in 14th
International Symposium of Static Analysis (SAS
’07), Nielson, H. R. and Filé, G. (eds.), Lecture
Notes in Computer Science 4634, Springer-Verlag,
2007, pp. 87-103.

[7] Brotherston, J.and Simpson, A. : Sequent calculi
for induction and infinite descent, Journal of Logic
and Computation, Vol.21, No.6 (2011), pp. 1177—
1216.

[8] Brotherston, J., Distefano, D., and Petersen,
R. L. : Automated cyclic entailment proofs in
separation logic, in 23rd International Conference
on Automated Deduction (CADE-23), Bjgrner, N.
and Sofronie-Stokkermans, V. (eds.), Lecture Notes
in Computer Science 6803, Springer-Verlag, 2011,
pp. 131-146.

[9] Brotherston, J., Gorogiannis, N., and Pe-
tersen, R. L. : A Generic Cyclic Theorem Prover,
in 10th Asian Symposium of Programming Lan-
guages and Systems (APLAS ’12), Jhala. R. and
Igarashi, A. (eds.), Lecture Notes in Computer Sci-
ence 7705, Springer-Verlag, 2012, pp. 350—-367.

[10] Chu, D. H., Jaffar, J., and Trinh, M. T. : Auto-
matic induction proofs of data-structures in imper-
ative programs, in 36th ACM SIGPLAN Confer-
ence on Programming Language Design and Imple-
mentation (PLDI ’15), Grove, D. and Blackburn, S.
(eds.), ACM Press, 2015, pp. 457-466.

[11] Das, A. and Pous, D. : Non-wellfounded proof
theory for (Kleene+action)(algebras+lattices), in
27th EACSL Annual Conference on Computer Sci-
ence Logic (CSL ’18), Ghica, D. R. and Jung, A.
(eds.), LIPIcs, Vol. 119, Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2018, pp. 19:01-19:18.

[12] Doumane, A.: On the infinitary proof theory of
logics with fixed points, PhD thesis, Paris 7, 2017.

[13] Nguyen, H. H. and Chin, W. N. : Enhancing
Program Verification with Lemmas, in 20th Interna-
tional Conference of Computer Aided Verification
(CAV ’08), Gupta, A. and Malik, S. (eds.), Lecture
Notes in Computer Science 5123, Springer-Verlag,
2008, pp. 355-369.

[14] Nollet, R., Saurin, A., and Tasson, C. : Local Va-
lidity for Circular Proofs in Linear Logic with Fixed
Points in 27th EACSL Annual Conference on Com-
puter Science Logic (CSL ’18), Ghica, D. R. and
Jung, A. (eds.), LIPIcs, Vol. 119, Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2018, pp. 35:01—
35:23.

Formalised Inductive Reason-

52 I E2—%VT7bhTT

[15] Reynolds, J. C. : Separation Logic: A Logic for
Shared Mutable Data Structures, in 17th Annual
IEEE Symposium on Logic in Computer Science
(LICS ’02), Plotkin, G. (ed.), ACM Press, 2002,
pp- 55-74.

[16] Simpson, A.: Cyclic Arithmetic Is Equivalent to
Peano Arithmetic, in 20th International Conference
on Foundations of Software Science and Computa-
tion Structures (FoSSaCS ’17), EsparzaAndrzej, J.
and Murawski, S. (eds.), Lecture Notes in Computer
Science 10203, Springer-Verlag, 2017, pp. 283-300.

[17] Ta, Q. T., Le, T. C.,, Khoo, S. C., and
Chin, W. N. : Automated Mutual Explicit Induc-
tion Proof in Separation Logic, in 21st Interna-
tional Symposium of Formal Methods (FM ’16),
Fitzgerald, J. S., Heitmeyer, C. L., Gnesi, S., and
Philippou, A. (eds.), Lecture Notes in Computer
Science 9995, Springer-Verlag, 2016, pp. 659-676.

[18] Ta, Q. T., Le, T. C.,, Khoo, S. C., and
Chin, W. N. : Automated lemma synthesis in
symbolic-heap separation logic, in 45th ACM SIG-
PLAN Symposium on Principles of Programming
Languages (POPL ’18), Vol.2, ACM Press, 2018,
Article No.9.

A+ K &

2007 {ERE IR A R E A F

e RHEMEF I T, Wt (Fk

). BT IERFAISERT TR B &

T 2016 4F 4 A &) IR FILE

%Eﬁﬂ%ﬂ%m TarsIvy
. BRI CER R o, BRI

|

= an iR, A
ﬁ%“ﬁ_%0<7U77Amﬁ FOMGHE B X

DZDFEEZIT> T D, [HRLHEEEEE

HIEIH W
2002 F AR R BT FE R
LRMERGT. FE, TEBAEA
SFEAERFISE R BT, 2007 4, [
WFeRBIZR. 2015 4E X) 4R K&
: K BB WA Ie R 2. BB
REFL (). Turs Iy rEEER, MY AT
LR, FNE DR @%k@ﬁ@b%%%%o HAY
VANESS H A $ EATCS =
32MHAARY 7 bvlﬁ%%’fé GBI E & 2 H

FAZEL

2006 4 1Y 7 4 Vv = T K EF
N— 7 Lo— B R R AR R 0 ER AR
187 . Ph.D.(Computer Science).
2007 4F, WAL KR RFEBEHHREL S
BRZERHBhE. 2011 4F, iR RER
FREE IR AU s RHERGR. 2014 4F, duBRSEimAke
B KA B R B R 2 e 2%, %N@ib?
FRH RSB Tap 8z, 7 ur 7 3 v 7 Sk

FZBR 2 FD. ACM, [HHILH PR KAE
BHLE

2009 FEHRFURFA R BEIEHRI T 4R
Wigekla v ¥ 2 — & Blapigrig+-ip
BAET. it (FHREIY). LK
FREEBEAE B AR 78 3%
RS KB R L R R
FHERFZEE 24T 2012 4, FLERF T A7 A 1HHAR
TE L. 2017 4, FdEEIR. Yurs 73y
7 EEME. WRAFHRICEKRE RO, ACM, HAY
PANESS e

