
Sanshusha pLATEX2ε: 07_kimura : 2020/1/16(12:14)

39

推薦論文● PPL 2019(特集●プログラミングおよびプログラミング言語)

Failure of Cut-Elimination in Cyclic Proofs of

Separation Logic

Daisuke Kimura, Koji Nakazawa, Tachio Terauchi, and

Hiroshi Unno

This paper studies the role of the cut rule in cyclic proof systems for separation logic. A cyclic proof sys-

tem is a sequent-calculus style proof system for proving properties involving inductively defined predicates.

Recently, there has been much interest in using cyclic proofs for proving properties described in separation

logic with inductively defined predicates. In particular, for program verification, several theorem provers

based on mechanical proof search procedures in cyclic proof systems for separation logic have been proposed.

This paper shows that the cut-elimination property fails in cyclic proof systems for separation logic in sev-

eral settings. We present two systems, one for sequents with single-antecedent and single-conclusion, and

another for sequents with single-antecedent and multiple-conclusions. To show the cut-elimination failure,

we present concrete and reasonably simple counter-example sequents which the systems can prove with cuts

but not without cuts. This result suggests that the cut rule is important for a practical application of cyclic

proofs to separation logic, since a näıve proof search procedure, which tries to find a cut-free proof, gives a

limit to what one would be able to prove.

1 Introduction

Separation logic [15] is a popular program logic

for reasoning about programs that use pointer data

structures. In separation logic, reasoning about re-

cursive data structures is made possible by aug-

menting the logic with inductively defined predi-

cates. For example, a predicate which says that

a pointer points to a list may be written as follows:

ls(x, y) := x 7→ y | x 7→ z ∗ ls(z, y).
Here, x 7→ y means that the memory cell at address

x contains the value y, and A ∗ B is a separating

conjunction which says that the memory is a union

of two memory regions hA and hB with disjoint do-

mains such that hA satisfies A and hB satisfies B.

分離論理の循環証明系におけるカット除去不能性.

木村大輔, 東邦大学, Toho University.

中澤巧爾, 名古屋大学, Nagoya University.

寺内多智弘, 早稲田大学, Waseda University.

海野広志, 筑波大学, Tsukuba University.

コンピュータソフトウェア, Vol.37, No.1(2020), pp.39–52.

[研究論文] 2019 年 6 月 14 日受付.

Therefore, ls(x, y) says that x points to a singly-

linked list that ends in y. (We refer to Section 2 for

the formal definition for our fragment of separation

logic.)

In the verification approach for heap-manipulating

programs based on Hoare-style logic, showing va-

lidity of entailments A |= B between formulas in

separation logic is necessary for the rule of conse-

quence:

{A1}P{B1}
{A2}P{B2}

A2 |= A1 and B1 |= B2
,

where P is a program to be verified, and {A}P{B}
is a Hoare-triple with a pre-condition A and a post-

condition B. For this purpose, several proof sys-

tems that employ sequents of the form A ⊢ B

and automatic theorem provers based on proof-

search algorithms in that systems have been pro-

posed [1][2][8]–[10][13][17][18].

In a sequent-calculus style proof system, it is cus-

tomary to handle inductively defined predicates like

ls(x, y) by adding a set of rules that introduce them

Sanshusha pLATEX2ε: 07_kimura : 2020/1/16(12:14)

40 コンピュータソフトウェア

to left and right sides of sequents. For ls(x, y), the

right introduction rules are:

A ⊢ x 7→ y

A ⊢ ls(x, y)

A ⊢ x 7→ z ∗ ls(z, y)
A ⊢ ls(x, y) ,

and the left introduction rule is:

(base case) (ind case) A ∗ C[x, y] ⊢ B

A ∗ ls(x, y) ⊢ B
(Ind)

,

where (base case) and (ind case) stand for A ∗ x 7→
y ⊢ C[x, y] and A ∗ x 7→ z ∗ C[z, y] ⊢ C[x, y] with

fresh variable z, respectively. C[x, y] is a formula

that may have free variables x and y. The premise

(base case) is the base case of the induction, that is,

it says that C holds in the base case. The premise

(ind case) encodes the inductive case with the in-

duction hypothesis C, that is, it roughly says that

if C holds for the smaller list from z to y then it

also holds for the larger list from x to y. The rule

is an obstacle to a mechanical proof search because

one needs to guess an appropriate C.

A cyclic proof system [5]–[7] offers an alternative

approach to doing proofs about inductively defined

predicates in a sequent calculus. In this approach,

the left introduction rule of an inductively defined

predicate is replaced by a rule that directly encodes

the inductive definition. For instance, the left in-

troduction rule of ls(x, y) is given as

A ∗ x 7→ y ⊢ B A ∗ x 7→ z ∗ ls(z, y) ⊢ B

A ∗ ls(x, y) ⊢ B
(UL)

.

A proof search in a cyclic proof system starts from

the root goal sequent, mechanically building the

proof tree upwards by applying an applicable rule

at each node. The search may stop by reaching a se-

quent (called a bud) that it has seen before (called a

companion), thereby forming a “cyclic” proof that

has an edge from a leaf bud node to an internal

companion node. To ensure correctness, a certain

condition, called global trace condition, is imposed

on the cyclic structure (cf. Section 3 for details).

Importantly, in the absence of the cut rule, the

possible children of a node can be syntactically de-

termined from the (finitely many) rules applicable

at the node, which substantially expedites the me-

chanical proof search.†1 The property has been

†1 Technically, this is only true if structural rules

such as weakening, contraction, and substitution

are made implicit.

used to a great advantage by researchers of cyclic

proofs, and they have proposed automatic theorem

provers based on cyclic proofs [8][9]. Furthermore,

as we discuss below, some automatic induction-

based provers for separation logic [10][13][17][18] can

also be seen as cyclic proof systems with restricted

forms of cuts.

Meanwhile, cyclic proof systems are being in-

tensively studied in the theoretical computer sci-

ence community (for various logics, such as sep-

aration logic, first-order logic, and linear logic)

[3]–[5][7]–[9][14][16]. The research has lead to some

remarkable results, such as showing that the cyclic

proof system (with cuts) is strictly more power-

ful than the standard inductive first-order logic se-

quent calculus (i.e., that with a rule analogous to

the (Ind) rule above) [3][7]. However, some fun-

damental proof-theoretic properties, such as cut-

elimination and completeness, still remain open.

As the main contribution of this paper, we show

that cut-elimination fails in cyclic proof systems

for separation logic. As remarked above, the re-

sult is not only of theoretical interest since the

presence of the cut rule substantially affects a me-

chanical proof search process. We prove the re-

sult for two cyclic proof systems for separation

logic: CSL0IDω which deduces sequents with sin-

gle conclusions, and CSLM
0 IDω which deduces se-

quents with multiple conclusions. We show the cut-

elimination failure by presenting concrete counter-

example sequents which the systems can prove with

cuts but not without cuts. The counter-examples

are fairly simple formulas about singly-linked lists.

They contain three kinds of semantically equivalent

predicates ls(x, y), lsX(x, y) and sl(x, y) each de-

scribing a singly-linked list from x to y. The predi-

cate ls(x, y) is the usual list definition shown above,

whereas lsX(x, y) defines a list to be either a list

of an odd length or a list of an even length where

odd and even length lists are defined inductively

in a manner analogous to ls(x, y). The predicate

sl(x, y) is a “backward” definition of a list whereby

a list is constructed by adding an element to the

tail rather than to the head. We show that the

sequent ls(x, y) ⊢ lsX(x, y) is a counter-example

to cut-elimination for CSL0IDω, and the sequent

ls(x, y) ⊢ sl(x, y) is that for CSLM
0 IDω. Thus, a

practical implication of our results is that (some

form of) a cut rule is necessary for designing useful

Sanshusha pLATEX2ε: 07_kimura : 2020/1/16(12:14)

Vol. 37 No. 1 Feb. 2020 41

theorem provers based on cyclic proofs, at least for

separation logic.

The rest of the paper is organized as follows. We

discuss related work next. Section 2 introduces

SL0, a simple fragment of separation logic used in

the rest of the paper. Section 3 presents CSL0IDω

and shows our first main result which says that

cut-elimination fails for CSL0IDω. CSL0IDω is

closely related to the system proposed by Broth-

erston et al. [8], and the section also shows that

cut-elimination fails in their system as well. In

Section 3, we present CSLM
0 IDω, and show that

the counter-example for CSL0IDω (i.e. ls(x, y) ⊢
lsX(x, y)) is cut-free provable in CSLM

0 IDω. Then,

we show that CSLM
0 IDω still fails to satisfy cut-

elimination by presenting the cut-free unprovabil-

ity of the counter-example ls(x, y) ⊢ sl(x, y). Sec-

tion 5 concludes the paper with a discussion on

future work.

Related Work: As remarked above, there has

been much work on meta-theoretic properties of

cyclic proof systems for various logics [3]–[5][7]–[9]

[11][12][14][16]. Among them, some papers dis-

cuss the cut-elimination property for cyclic proof

systems. The paper [12] considers a cyclic proof

system for µMALL (linear logic with least and

greatest fixed-point operators), and discusses non-

preservability of the cyclic structure by the ordi-

nary cut-elimination procedure. It discusses the

behavior of cut-elimination procedure, but our pa-

per considers admissibility of the cut rule. The pa-

per [11] proposes a sequent-style system for Kleene

algebra, and shows the cut rule is not admissible in

the system.

In the context of (semi-)automated deduction,

several cyclic-proof-based theorem provers for sep-

aration logic have been proposed [8][10][13][17][18].

Some of them allow restricted forms of cut. For

instance, SLEEK [13] allows cuts, but only against

user-provided lemmas. The theorem provers pro-

posed in [10][17][18] synthesize induction hypothe-

ses during the proof search by following a certain

set of rules. They can be seen as a kind of a cyclic

proof system in which the cuts are restricted to be

only against the synthesized induction hypotheses.

None of these papers investigate the effect of having

or not having the cut rule nor clarify whether their

restricted forms of cuts are enough or not enough

for theorem proving purpose.

2 Simple separation logic SL0

This section defines a simple fragment of sepa-

ration logic (SL0), which has the minimum neces-

sary connectives 7→ and ∗ to define our counter-

examples.

2. 1 Syntax of SL0

We assume a finite set {P1, . . . , PK} of inductive

predicates. Each inductive predicate P has its arity

ar(P). Terms of SL0 (denoted by t, u, . . .) consist of

variables (x, y, z · · ·) and nil. We sometimes write

x ∈ −→x if x appears in −→x .

Formulas (denoted by A,B,C, . . .) of SL0 are de-

fined as follows.

A ::= t 7→ u | P (
−→
t) | A ∗A,

where the length of
−→
t is ar(P). We sometimes

write A(−→x) to denote variables occurring in A ex-

plicitly. We implicitly suppose associativity and

commutativity of the separating conjunction ∗,
that is, A ∗B=B ∗A and (A ∗B) ∗C=A ∗ (B ∗C).

The set of free variables in A is written as FV(A).

The union of FV(A1), . . . ,FV(An) is written as

FV(A1, . . . , An).

A substitution (denoted by θ) has the form x1 :=

t1, . . . , xk := tk, where xi and xj are different vari-

ables if i ̸= j. The formula obtained by replac-

ing each xi by ti (i = 1, . . . , k) in A is written by

A[x1 := t1, . . . , xk := tk].

Each inductive predicate P has its own definition,

which is given as follows:

P (−→x) := A1 | . . . | As

Each Ai is called a definition clause of P . Intu-

itively, this means that P (−→x) is defined by the

disjunction of A1, . . . , As. We note that variables

of Aj not appearing in −→x are implicitly existen-

tially quantified. Namely, P (−→x) is defined by

∃−→y1A1(
−→x ,−→y1) ∨ . . . ∨ ∃−→ysAs(

−→x ,−→ys).
In this paper we will consider several kinds of list

predicates ls, sl, lsO, lsE and lsX given below.

Definition 1. The definitions of ls, sl, lsO, lsE,

and lsX are given as follows.

ls(x, y) := x 7→ y | x 7→ z ∗ ls(z, y)
sl(x, y) := x 7→ y | sl(x, z) ∗ z 7→ y

lsO(x, y) := x 7→ y | x 7→ z ∗ lsE(z, y)

lsE(x, y) := x 7→ z ∗ lsO(z, y)

lsX(x, y) := lsO(x, y) | lsE(x, y)

Both ls(x, y) and sl(x, y) mean singly-linked list

Sanshusha pLATEX2ε: 07_kimura : 2020/1/16(12:14)

42 コンピュータソフトウェア

segments of positive lengths from x to y. The for-

mer and the latter predicates represent list seg-

ments constructed by adding cells repeatedly to the

head position and the tail position, respectively.

lsO(x, y) and lsE(x, y) mean list segments with

odd and positive even lengths, respectively. They

are defined by a mutual induction. lsX(x, y) means

list segments with odd or positive even length, that

is, list segments of positive length. The formu-

las ls(x, y), sl(x, y), and lsX(x, y) are semantically

equivalent (see Lemma 2).

2. 2 Semantics of SL0

Let N be the set of natural numbers. A store

(denoted by s) is a function from variables to N .

It is extended to a function on terms by s(nil) = 0.

We define update s[x1 := a1, . . . , xn := an] of s by

the store s′ such that s′(xi) = ai and s′(y) = s(y)

if y ̸∈ {x1, . . . , xn}. It is sometimes abbreviated

by s[−→x := −→a]. A heap (denoted by h) is a fi-

nite partial function from N \ {0} to N . The do-

main of h is written by dom(h). We write h1 + h2

for disjoint union of h1 and h2, namely, it is de-

fined when dom(h1) and dom(h1) are disjoint, and

(h1 + h2)(a) = hi(a) if a ∈ dom(hi) for i = 1, 2.

We sometimes write [a1 7→ b1, . . . , am 7→ bm] for

the heap h defined by dom(h) = {a1, . . . , am} and

h(aj) = bj (1 ≤ j ≤ m).

A pair (s, h) is called a heap model.

Definition 2 (Interpretation of formulas). The in-

terpretation of a formula A in (s, h) (denoted by

s, h |= A) is inductively defined as follows.

• s, h |= t 7→ u
def⇐⇒ h = [s(t) 7→ s(u)],

• s, h |= P (0)(
−→
t)

def⇐⇒ never,

• s, h |= P (m+1)(
−→
t)

def⇐⇒ s[−→y :=
−→
b], h |= A[

−−−→
P (m)/

−→
P](

−→
t ,−→y)

for some
−→
b and definition clause A of P ,

• s, h |= P (
−→
t)

def⇐⇒ s, h |= P (m)(
−→
t) for some m,

• s, h |= A1 ∗A2
def⇐⇒ s, h1 |= A1 and s, h2 |= A2

for some h1 and h2 such that h = h1 +h2,

where P (m) is an auxiliary notation for defining

s, h |= P (
−→
t) and A[

−−−→
P (m)/

−→
P] is the formula ob-

tained by replacing each Pi by P
(m)
i .

Intuitively P (m) corresponds the m-time un-

folding of P , that is, P (0)(−→x) means ⊥ and

P (m+1)(−→x) means
∨s

i=1
∃−→yiAi[

−−−→
P (m)/

−→
P](−→x ,−→yj),

where A1, . . . , As are the definition clauses of P .

The following lemma explains how the above def-

inition for inductive predicates works. This re-

sult will be used in the proof of Theorem 2 and

Lemma 5.

Lemma 1. Let hn be [a0 7→ a1, a1 7→
a2, . . . , an−1 7→ an] for n ≥ 1. That is, hn forms

a singly-linked list of length n. Take a store s

that satisfies s(x) = a0 and s(y) = an. Then we

have s, hn |= ls(n)(x, y) by induction on n. Hence

s, hn |= ls(x, y) holds for any n ≥ 1. We can also

show s, hn |= sl(x, y) and s, hn |= lsX(x, y).

We say A and B are logically equivalent if for

any heap model (s, h), s, h |= A and s, h |= B are

equivalent. Then we have the following claim.

Lemma 2. ls(x, y), sl(x, y), and lsX(x, y) are log-

ically equivalent.

3 Cyclic proof system CSL0IDω

This subsection defines a cyclic proof system

CSL0IDω for SL0, which handles single-conclusion

sequents defined as follows.

Definition 3 (Single-conclusion sequents of SL0).

A sequent of SL0 has the form A ⊢ B. The formula

on the left-hand side and the right-hand side of a

sequent are called its antecedent and succedent (or

conclusion), respectively. A sequent A ⊢ B is called

valid if, for any heap model (s, h), s, h |= A implies

s, h |= B.

The following subsections give several infer-

ence rules of the form
S1 · · · Sn

S
with sequents

S, S1, . . . , Sn. For each inference rule, sequents

above the horizontal line are called its premises,

and a sequent below the line is called its conclu-

sion.

In order to avoid confusion, we will use

the word “conclusion” only for inference rules,

and the words “single-conclusion” and “multiple-

conclusion” (they are used for sequents) are never

shortened into the word “conclusion”.

3. 1 The proof system CSL0IDω

The derivation rules of CSL0IDω consist of the

basic rules and the unfolding rules. The basic rules

are the following three rules:

Sanshusha pLATEX2ε: 07_kimura : 2020/1/16(12:14)

Vol. 37 No. 1 Feb. 2020 43

A ⊢ A
(Id)

A ⊢ C C ⊢ B
A ⊢ B

(Cut)
A1 ⊢ B1 A2 ⊢ B2

A1 ∗A2 ⊢ B1 ∗B2
(∗)

The rule (Id) is the identity rule, the rule (Cut) is

the cut-rule in the sequent calculus. The rule (∗)
combines two premises into one with the separat-

ing conjunction ∗, that is, it says if A1 implies B1

and A2 implies B2, then B1 ∗ B2 is obtained from

A1 ∗A2, since A1 and A2 independently implies B1

and B2, respectively.

The unfolding rules consist of (UL) and (UR). In

the following, we assume P (−→x) := A1 | . . . | As is

the definition of P .

B ⊢ Aj(
−→
t ,−→u)

B ⊢ P (
−→
t)

(UR)

B ∗A1(
−→
t ,−→z1) ⊢ C · · · B ∗As(

−→
t ,−→zs) ⊢ C

B ∗ P (
−→
t) ⊢ C

(UL)

where −→z1 , . . . ,−→zs are fresh.

Example 1. The unfolding rules for ls, sl, lsO,

lsE and lsX are as follows.

(1) Rules for ls:

B ⊢ t 7→ u
B ⊢ ls(t, u)

(UR)
B ⊢ t 7→ t1 ∗ ls(t1, u)

B ⊢ ls(t, u)
(UR)

B ∗ t 7→ u ⊢ C B ∗ t 7→ z ∗ ls(z, u) ⊢ C

B ∗ ls(t, u) ⊢ C
(UL)

(2) Rules for sl:

B ⊢ t 7→ u
B ⊢ sl(t, u)

(UR)
B ⊢ sl(t, u1) ∗ u1 7→ u

B ⊢ sl(t, u)
(UR)

B ∗ t 7→ u ⊢ C B ∗ sl(t, z) ∗ z 7→ u ⊢ C

B ∗ sl(t, u) ⊢ C
(UL)

(3) Rules for lsO:

B ⊢ t 7→ u
B ⊢ lsO(t, u)

(UR)
B ⊢ t 7→ t1 ∗ lsE(t1, u)

B ⊢ lsO(t, u)
(UR)

B ∗ t 7→ u ⊢ C B ∗ t 7→ z ∗ lsE(z, u) ⊢ C

B ∗ lsO(t, u) ⊢ C
(UL)

(4) Rules for lsE:

B ⊢ t 7→ t1 ∗ lsO(t1, u)

B ⊢ lsE(t, u)
(UR)

B ∗ t 7→ z ∗ lsO(z, u) ⊢ C

B ∗ lsE(t, u) ⊢ C
(UL)

(5) Rules for lsX:

B ⊢ lsO(t, u)

B ⊢ lsX(t, u)
(UR)

B ⊢ lsE(t, u)

B ⊢ lsX(t, u)
(UR)

B ∗ lsO(t, u) ⊢ C B ∗ lsE(t, u) ⊢ C

B ∗ lsX(t, u) ⊢ C
(UL)

We define a cyclic proof of CSL0IDω in a similar

way to [6][7].

Definition 4 (Derivation tree). A derivation tree

(denoted by D) of a sequent e is a finite tree struc-

ture whose nodes are labeled by sequents of SL0,

the label of the root node is e, and a node labeled

with e′ has children labeled with e′1, . . . , e
′
k when

there is an instance e′1 . . . e′k

e′
of an inference rule

of CSL0IDω. A leaf node which is the conclusion of

the rule (Id) is called closed. An open (not closed)

leaf is called a bud. A companion for a bud eb is an

occurrence of a sequent ec in D of which eb is an

substitution instance, namely, eb = ec[θ] for some

θ.

In a derivation tree, if e appears as a conclusion

of a rule instance and e′ is a premise of the rule,

e′ is called a premise of e. In this case, e is called

a parent of e′. Similarly we also use the usual ter-

minology of the tree structure such as child and

descendant.

Definition 5 (Pre-proof). A pre-proof of e is given

by (D,R), where D is a derivation tree of e and R
is a function assigning a companion to every bud of

D. A proof-graph G(P) of a pre-proof P = (D,R)

is a graph structure D with additional edges from

buds to their companions assigned by R. A path in

P is a path in G(P).

Definition 6 (Trace). Let (ei)i∈ω be an infinite

path in P. A trace following (ei)i∈ω is a sequence

of (Ci)i∈ω such that each Ci is a subformula occur-

rence of the form P (
−→
t) in the antecedent of ei, and

satisfies the following conditions:

(a) if ei is the conclusion of (UL) in D, then either

Ci = Ci+1 or Ci is unfolded in the rule instance

and Ci+1 appears as a subformula of the unfolding

result. In the latter case, i is called a progressing

point of the trace;

(b) if ei is the conclusion of a rule other than (UL),

Sanshusha pLATEX2ε: 07_kimura : 2020/1/16(12:14)

44 コンピュータソフトウェア

x 7→ z ∗ lsO(z, y) ⊢ x 7→ z ∗ lsO(z, y)

x 7→ z ∗ lsO(z, y) ⊢ lsE(x, y)
(UR)

x 7→ z ∗ lsO(z, y) ⊢ lsX(x, y)
(UR)

x 7→ z ∗ lsE(z, y) ⊢ x 7→ z ∗ lsE(z, y)

x 7→ z ∗ lsE(z, y) ⊢ lsO(x, y)
(UR)

x 7→ z ∗ lsE(z, y) ⊢ lsX(x, y)
(UR)

x 7→ z ∗ lsX(z, y) ⊢ lsX(x, y)
(UL)

x 7→ y ⊢ x 7→ y

x 7→ y ⊢ lsO(x, y)
(UR)

x 7→ y ⊢ lsX(x, y)
(UR)

x 7→ z ⊢ x 7→ z (†) ls(z, y) ⊢ lsX(z, y)

x 7→ z ∗ ls(z, y) ⊢ x 7→ z ∗ lsX(z, y)
(∗) (1)

x 7→ z ∗ lsX(z, y) ⊢ lsX(x, y)

x 7→ z ∗ ls(z, y) ⊢ lsX(x, y)
(Cut)

(†) ls(x, y) ⊢ lsX(x, y)
(UL)

Fig. 1 Cyclic proof of ls(x, y) ⊢ lsX(x, y) (for Proposition 1)

then Ci+1 is the corresponding subformula occur-

rence in ei+1, which satisfies Ci+1=Ci;

(c) if ei is a bud and ei+1[θ] = ei for some substitu-

tion θ, then Ci+1 is the corresponding subformula

occurrence in ei+1, which satisfies Ci+1[θ]=Ci.

Definition 7 (Cyclic proof). Let P be a pre-proof

of e. P is called a cyclic proof of e if it satisfies the

global trace condition: for any infinite path (ei)i∈ω

in P, there exists a trace (Ci)i∈ω following the path

that has infinitely many progressing points.

The global trace condition is a sufficient condi-

tion for soundness, that is, we have the following

theorem. This theorem is shown by the similar way

to [6]–[8].

Theorem 1 (Soundness of CSL0IDω). If A ⊢ B

has a cyclic proof P of CSL0IDω, then all sequents

in P are valid. In particular, A ⊢ B is valid.

In the following subsection we will prove that

ls(x, y) ⊢ lsX(x, y) is a counter-example for the

cut-elimination property of CSL0IDω. We first

show that this example has a cyclic proof with

(Cut).

Proposition 1. (1) x 7→ z ∗ lsX(z, y) ⊢ lsX(x, y)

is cut-free provable in CSL0IDω.

(2) ls(x, y) ⊢ lsX(x, y) is provable in CSL0IDω

with (Cut).

Proof. (1) is shown by the upper proof of Fig 1.

The lower one is a pre-proof by putting the upper

proof at the node labeled by (1) and by connecting

the bud ls(z, y) ⊢ lsX(z, y) marked by (†) to the

entailment with the same mark at the root position.

The pre-proof is a cyclic proof that shows (2), since

the only infinite path which is created from the bud-

companion has an infinitely progressing trace (the

sequence of the underlined predicates).

3. 2 Counter-example for cut-elimination

of CSL0IDω

We define ♯7→A by the number of 7→ in A. We

also define ♯ 7→(A ⊢ B) by ♯7→A.

Next theorem is our first main result, namely, the

cut-elimination property fails in CSL0IDω.

Theorem 2. The sequent ls(x, y) ⊢ lsX(x, y) is

not cut-free provable in CSL0IDω.

Proof. Suppose that ls(x, y) ⊢ lsX(x, y) has a cut-

free cyclic proof (D,R). We will show contradic-

tion.

We construct a finite path e = (e0, e1, . . . , em) of

D such that each ej has the form (up to permuta-

tion of ∗)
z0 7→ z1 ∗ . . . ∗ zkj−1 7→ zkj ∗ ls(zkj , w) ⊢ lsX(z0, w)

for some kj and pairwise distinct variables

z0, . . . , zkj , w. Let e0 be ls(x, y) ⊢ lsX(x, y) at

the root position. Assume that e0, . . . , ej are al-

ready defined. If ej is the conclusion of a (UL),

then define ej+1 by the unique premise of the rule

instance that contains the ls-predicate in the an-

tecedent. We note that ej+1 has the required form

and ♯7→ej < ♯ 7→ej+1. Otherwise finish constructing

the path e.

Claim 1. For any sequent e in D, if the an-

tecedent of e contains the ls-predicate, then e ∈ e

or e is a descendant of em.

This claim is shown by induction on the height

ht(e), namely the length of the path from the root

node to e, of e in D. If ht(e) = 0, then e = e0 ∈ e.

We show the case ht(e) > 0. Assume e ̸∈ e. We

show that e is a descendant of em. In this case, e is

a premise of an instance of a rule (r), which is not

(Cut). Let e′ be the parent of e, that is the conclu-

sion of the rule instance. Then the antecedent of

e′ contains the ls-predicate. Hence e′ ∈ e or e′ is

a descendant of em by the induction hypothesis. If

Sanshusha pLATEX2ε: 07_kimura : 2020/1/16(12:14)

Vol. 37 No. 1 Feb. 2020 45

the latter case holds, we have the expected result.

Otherwise, e′ must be em since e contains ls, e′ ∈ e

and e ̸∈ e. Thus e is a descendant of em. Hence we

have Claim 1.

Claim 2. em is not a bud.

We show this claim. Assume that em is a bud.

Then the antecedent of the companion e contains

the ls-predicate. By Claim 1, we have e ∈ e

since em is a bud. Hence there is an infinite path

e, . . . , em, e, . . . of the cyclic proof (D,R). By the

global trace condition, there is a trace following the

path with infinitely many progressing points. This

means ♯ 7→e < ♯ 7→em ≤ ♯7→e. Hence we have contra-

diction. Thus we obtain Claim 2.

By Claim 2, em is a conclusion of an instance of

a rule (r). Then (r) must be (UR) by case analysis

of the inference rules. Let ẽ be the unique child of

em in D. The form of ẽ is either

(a) z0 7→ z1 ∗ . . . ∗ zkm−1 7→ zkm ∗ ls(zkm , w) ⊢
lsO(z0, w), or

(b) z0 7→ z1 ∗ . . . ∗ zkm−1 7→ zkm ∗ ls(zkm , w) ⊢
lsE(z0, w).

Consider the case (a). Take a store s1 such that

s1(zi) = i+1 and s1(w) = 2 ∗ km +1. Define h1 by

dom(h1) = {1, 2, . . . , 2∗km} and h1(i) = i+1. Then

s1, h1 |= z0 7→ z1 ∗ . . . ∗ zkm−1 7→ zkm ∗ ls(zkm , w)

and s1, h1 ̸|= lsO(z0, w). Hence (a) is invalid. We

can also show that (b) is invalid by taking s2 such

that s2(zi) = i + 1 and s2(w) = 2 ∗ km + 2, and

defining h2 by dom(h2) = {1, 2, . . . , 2 ∗ km + 1}
and h2(i) = i + 1. Therefore ẽ is invalid. This

contradicts the soundness theorem. Hence we con-

clude that ls(x, y) ⊢ lsX(x, y) is not cut-free prov-

able.

By combining proposition 1 and theorem 2, we

can obtain our first main result.

Corollary 1. The cyclic proof system CSL0IDω

does not enjoy the cut-elimination property.

We note that our CSL0IDω is designed as sim-

ple as possible in order to clarify the essence of our

discussion. The above corollary can be extended

easily to cyclic proof systems (of single-conclusion

sequents) that are extensions of CSL0IDω with

other connectives whose inference rules guarantee

the subformula property.

3. 3 Failure of Cut-elimination in Broth-

erston’s CADE2011-system

In this subsection we aim to demonstrate that

our proof technique in the previous subsection also

works for Brotherston’s CADE2011 paper [8]. The

readers may hope to extend our result in the pre-

vious subsection to Brotherston’s system as men-

tioned after Corollary 1. However we cannot do

it, since Brotherston’s system contains the empty

predicate emp, which is the unit of ∗. It requires

the inference rules that do not guarantee the subfor-

mula property (see the rules (EmpL’) and (EmpR’)

below). While the essence of the proof technique re-

mains the same, a small modification is necessary

to handle these inference rules.

We first extend SL0 by adding emp, that is, the

formulas of the extended system SL’0 are given as

follows:

A ::= t 7→ t | A ∗A | P (
−→
t) | emp

The interpretation of the empty predicate is given

as follows:

s, h |= emp
def⇐⇒ dom(h) = ∅

Then we extend CSL0IDω by adding the follow-

ing derivation rules:

A ⊢ B
A ⊢ B ∗ emp

(EmpR)
A ⊢ B

emp ∗A ⊢ B
(EmpL)

A ⊢ B ∗ emp

A ⊢ B
(EmpR’)

emp ∗A ⊢ B

A ⊢ B
(EmpL’)

x 7→ u ∗ x 7→ u′ ∗A ⊢ B
(Unsat 7→)

We call this extended system CSL’0IDω.

The definitions of pre-proofs, traces, and cyclic

proofs of CSL’0IDω are given in the similar way to

those of CSL0IDω. The soundness theorem for this

extended system also holds.

Then we can show the similar claim to Theo-

rem 2.

Proposition 2. The sequent ls(x, y) ⊢ lsX(x, y)

is not cut-free provable in CSL’0IDω.

Proof (sketch). Suppose that ls(x, y) ⊢ lsX(x, y)

has a cut-free cyclic proof (D,R). We construct a

finite path e = (e0, e1, . . . , em) of D such that each

ej has the form

∗kj−1

i=0 zi 7→ zi+1∗ls(zkj , w)∗−−−→emp ⊢ lsX(z0, w)∗−−−→emp

for some kj and pairwise distinct variables

z0, . . . , zkj , w, and e0 is ls(x, y) ⊢ lsX(x, y) at the

root position. If ej is the conclusion of a (UL), de-

Sanshusha pLATEX2ε: 07_kimura : 2020/1/16(12:14)

46 コンピュータソフトウェア

fine ej+1 by the unique premise of ej which contains

ls. If ej is the conclusion of EmpL, EmpR, EmpL’,

or EmpR’, define ej+1 by the unique premise. We

claim that ♯7→ej ≤ ♯ 7→ej+1 for any j < m, and, in

particular, ♯7→ej < ♯ 7→ej+1 if ej is the conclusion

of a rule instance of (UL). Then we have the same

claims as Claim 1 and Claim 2 of Theorem 2. We

also have the following claim:

Claim 3 em is not the conclusion of a rule in-

stance of (Unsat 7→).

This claim is obtained by investigating that the an-

tecedents of e are satisfiable. Hence em cannot be

the conclusion of (Unsat7→).

By using Claim 1, Claim 2, and Claim 3, we can

show the expected result in a similar way to the

proof of Theorem 2.

We introduce an extended system CSLBIDω,

which is a variant of Brotherston’s system [8]. The

difference between these two systems is not essen-

tial: terms of the system in [8] are only variables.

The formulas of CSLBIDω are given as follows:

A ::= t 7→ t | A ∗A | P (
−→
t) | emp

| t = t | t ̸= t | t 27→ (t, t) | ⊤ | ⊥ | A ∨A

The derivation rules of CSLBIDω are those of

CSL’0IDω with the following rules:

⊥ ∗A ⊢ B
(⊥)

A ⊢ ⊤ (⊤)
A ⊢ t = t

(=R)

t = u ∗ t ̸= u ∗A ⊢ B
(Unsat=)

t
27→ (u1, u2) ∗ t

27→ (u′
1, u

′
2) ∗A ⊢ B

(Unsat
27→)

A1 ∗B ⊢ C A2 ∗B ⊢ C

(A1 ∨A2) ∗B ⊢ C
(∨L)

A ⊢ Bi ∗ C
A ⊢ (B1 ∨B2) ∗ C

(∨R)
(i = 1, 2)

The following lemma shows that the above addi-

tional inference rules cannot be applied in proof-

search procedures of ls(x, y) ⊢ lsX(x, y).

Lemma 3. Let A and B be formulas of CSLBIDω

whose connectives and predicates are emp, ∗, 7→,

ls, lsX, lsE, and lsO. Assume A ⊢ B has a cut-

free derivation tree of CSLBIDω. Then all infer-

ence rules used in the derivation tree are those of

CSL’0IDω.

This lemma can be shown by induction on the

derivation tree.

As the result of this subsection, we can show the

failure of cut-elimination in CSLBIDω.

Theorem 3 (Failure of cut-elimination in

CSLBIDω). CSLBIDω does not enjoy the cut-

elimination property.

Proof. Note that ls(x, y) ⊢ lsX(x, y) can be shown

in CSLBIDω with (Cut), since CSLBIDω is an ex-

tension of CSL0IDω. Then we show ls(x, y) ⊢
lsX(x, y) is not cut-free provable in CSLBIDω.

Assume that it has a cut-free cyclic proof of

CSLBIDω. Then the cyclic proof is also a proof

of CSL’0IDω since all inference rules are those of

CSL’0IDω by the previous lemma. Hence we have

contradiction by proposition 2.

Remark 1. In [8], an automated prover for se-

quents (that do not contain nil) in CSLBIDω,

which is based on a proof-search procedure in

CSLBIDω, is proposed. Although the system con-

tains (Cut), the tool uses the rule for managing

basic properties about ∗, such as associativity, com-

mutativity, and unit of ∗. Hence the prover cannot

find non-trivial cut-formulas (e.g. the cut-formula

x 7→ z∗lsX(z, y) used in the proof of Proposition 1)

during its proof-search procedure.

Recall that each sequent considered in this sec-

tion has a single-conclusion. It is the reason why

ls(x, y) ⊢ lsX(x, y) works as a counter-example for

the cut-elimination, that is, we are forced to choose

either lsO(x, y) or lsE(x, y) in unfolding lsX(x, y)

on the right-hand side of a sequent. This situa-

tion can be avoided if we consider sequents with

multiple-conclusions.

4 Cyclic proof system CSLM
0 IDω for

multiple-conclusion SL0

This section presents the second cyclic proof

system CSLM
0 IDω for sequents with multiple-

conclusions defined below.

Let ∆ be a multiset of formulas. We sometimes

write B1, B2, . . . , Bn instead of {B1, B2, . . . , Bn}.
We also write ∆, B for ∆ ∪ {B}. We define ∆ ∗∆′

by {B ∗ B′ | B ∈ ∆ and B′ ∈ ∆′}. We also define

s, h |=
∨

∆ by ∃B ∈ ∆(s, h |= B).

Definition 8 (Multiple-conclusion sequents of

Sanshusha pLATEX2ε: 07_kimura : 2020/1/16(12:14)

Vol. 37 No. 1 Feb. 2020 47

SL0). The multiple-conclusion sequents of SL0 have

the form A ⊢ ∆. A sequent A ⊢ ∆ is valid if, for

any (s, h), s, h |= A implies s, h |=
∨

∆.

4. 1 Cyclic proof system CSLM
0 IDω for

multiple-conclusion sequents

The derivation rules of CSLM
0 IDω consists of the

basic rules and the unfolding rules. The basic rules

of CSLM
0 IDω are given as follows.

A ⊢ A
(Id)

A ⊢ ∆1, C C ⊢ ∆2

A ⊢ ∆1,∆2
(Cut)

A1 ⊢ ∆1 A2 ⊢ ∆2

A1 ∗A2 ⊢ ∆1 ∗∆2
(∗)

A ⊢ ∆
A ⊢ ∆, B

(Wk)
A ⊢ ∆, B,B

A ⊢ ∆, B
(Ctr)

The unfolding rules (UL) and (UR) of CSLM
0 IDω

are straightforward extension of those of CSL0IDω.

We assume that P (−→x) := A1 | . . . | As is the defi-

nition of P .
B ⊢ ∆, C ∗Aj(

−→
t ,−→u)

B ⊢ ∆, C ∗ P (
−→
t)

(UR)

B ∗A1(
−→
t ,−→z1) ⊢ ∆ . . . B ∗As(

−→
t ,−→zs) ⊢ ∆

B ∗ P (
−→
t) ⊢ ∆

(UL)

where −→z1 , . . . ,−→zn are fresh.

The pre-proofs, traces, and cyclic proofs of

CSLM
0 IDω are defined similarly to those of

CSL0IDω.

Remark 2. The main difference between CSL0IDω

and CSLM
0 IDω is the structural rules, namely

the contraction rule (Ctr) and the weakening rule

(Wk). These rules allow to change whole proof

structure and strengthen the provability of the

proof system. As we will see in the next proposi-

tion, the previous counter-example does not work in

the current system. Hence we need a new counter-

example and a new proof technique that can cap-

ture the changed proof structure.

The soundness theorem of CSLM
0 IDω is also

shown in a similar way to that of CSL0IDω:

Theorem 4 (Soundness of CSLM
0 IDω). If A ⊢ ∆

has a cyclic proof P of CSLM
0 IDω, then all sequents

in P are valid. In particular, A ⊢ ∆ is valid.

The previous example ls(x, y) ⊢ lsX(x, y) is cut-

free provable in the current system.

Proposition 3. ls(x, y) ⊢ lsX(x, y) is cut-free

provable in CSLM
0 IDω.

Proof. The proof figure given in Fig 2 is a cut-

free pre-proof of ls(x, y) ⊢ lsX(x, y) in CSLM
0 IDω.

Note that the two entailments marked by (†) are in

a bud-companion relation. The only infinite path

in this pre-proof contains an infinitely progressing

trace (the sequence of the underlined predicates).

Hence this pre-proof is a cyclic proof, since it sat-

isfies the global trace condition.

This proposition shows that ls(x, y) ⊢ lsX(x, y)

does not work as a counter-example for the cut-

elimination property of CSLM
0 IDω. However

we still have another counter-example ls(x, y) ⊢
sl(x, y). We first show that this sequent is prov-

able in CSLM
0 IDω.

Proposition 4. (1) x 7→ z ∗ sl(z, y) ⊢ sl(x, y) is

(cut-free) provable in CSLM
0 IDω.

(2) ls(x, y) ⊢ sl(x, y) is provable in CSLM
0 IDω

with (Cut).

Proof. The proof figures in Fig 3 show both (1) and

(2). The first claim is obtained by the upper pre-

proof, which is a cyclic proof since it satisfies the

global trace condition. The lower figure becomes a

pre-proof by putting the upper one at the position

marked by (1). We can easily check the pre-proof

satisfies the global trace condition. Hence (2) is

shown, since ls(x, y) ⊢ sl(x, y) has a cyclic proof

with (Cut).

4. 2 Counter-example for cut-elimination

of CSLM
0 IDω

This subsection shows that the cut-elimination

property fails in CSLM
0 IDω. The main result of

this section is the following theorem.

Theorem 5. The sequent ls(x, y) ⊢ sl(x, y) is not

cut-free provable in CSLM
0 IDω.

Remark 3. In the proof of Theorem 2, a contra-

diction appears at the point when (UR) is applied

to the unique succedent. In the current case, how-

ever, this idea does not work, since, at the point

that (UR) is used, a formula before (UR) may re-

main in the succedent part because of contraction.

Our basic idea for proving Theorem 5 is as fol-

lows: focusing on the path of a cyclic proof that

contains both ls in the antecedent part and sl in

the succedent part; and analyzing the form of se-

quents on the path. To do this, we prepare some

notions and show their properties.

In the following we write∗n
i=0Ai for A0∗· · ·∗An.

Sanshusha pLATEX2ε: 07_kimura : 2020/1/16(12:14)

48 コンピュータソフトウェア

x 7→ y ⊢ x 7→ y

x 7→ y ⊢ lsO(x, y)
(UR)

x 7→ y ⊢ lsO(x, y), lsE(x, y)
(Wk)

x 7→ z ⊢ x 7→ z (†) ls(z, y) ⊢ lsE(z, y), lsO(z, y)

x 7→ z ∗ ls(z, y) ⊢ x 7→ z ∗ lsE(z, y), x 7→ z ∗ lsO(z, y)
(∗)

x 7→ z ∗ ls(z, y) ⊢ lsO(x, y), lsE(x, y)
(UR× 2)

(†) ls(x, y) ⊢ lsO(x, y), lsE(x, y)
(UL)

ls(x, y) ⊢ lsX(x, y), lsX(x, y)
(UR× 2)

ls(x, y) ⊢ lsX(x, y)
(Ctr)

Fig. 2 Cut-free cyclic proof of ls(x, y) ⊢ lsX(x, y) (for Proposition 3)

x 7→ z ∗ z 7→ y ⊢ x 7→ z ∗ z 7→ y

x 7→ z ∗ z 7→ y ⊢ sl(x, z) ∗ z 7→ y
(UR)

x 7→ z ∗ z 7→ y ⊢ sl(x, y)
(UR)

(†) x 7→ z ∗ sl(z, w) ⊢ sl(x,w) w 7→ y ⊢ w 7→ y

x 7→ z ∗ sl(z, w) ∗ w 7→ y ⊢ sl(x,w) ∗ w 7→ y
(∗)

x 7→ z ∗ sl(z, w) ∗ w 7→ y ⊢ sl(x, y)
(UR)

(†) x 7→ z ∗ sl(z, y) ⊢ sl(x, y)
(UL)

x 7→ y ⊢ x 7→ y

x 7→ y ⊢ sl(x, y)
(UR)

x 7→ z ⊢ x 7→ z (‡) ls(z, y) ⊢ sl(z, y)

x 7→ z ∗ ls(z, y) ⊢ x 7→ z ∗ sl(z, y)
(∗) (1)

x 7→ z ∗ sl(z, y) ⊢ sl(x, y)

x 7→ z ∗ ls(z, y) ⊢ sl(x, y)
(Cut)

(‡) ls(x, y) ⊢ sl(x, y)
(UL)

Fig. 3 Cyclic proof of ls(x, y) ⊢ sl(x, y) (for Proposition 4)

Definition 9 (Ls-form). An SL0 formula is called

a connected Ls-form from x to y, if it has the form

∗n−1
i=0 zi 7→ zi+1∗ls(zn, y), z0 is x, and −→z , y are pair-

wise distinct variables. A formula is called an Ls-

form from x to y, if it is obtained by removing some

points-to predicates from a connected Ls-form.

We sometimes omit “from x to y” if it is apparent

from the context.

Definition 10 (Sl-form). A formula is called a

connected Sl-form from x to y, if it has the form

sl(x, zn) ∗ ∗n−1
i=0 zi+1 7→ zi with z0 = y. A formula

is called an Sl-form from x to y, if it is obtained

by removing some points-to predicates from a con-

nected Sl-form. A formula is called a semi Sl-form,

if it is an Sl-form or contains only 7→.

A finite multiset ∆ of formulas is called a semi

Sl-form, if all elements of ∆ are semi Sl-form.

The following lemma is easily shown from the

definition.

Lemma 4. If A is an Ls-form from x to y, then

A is satisfiable.

Lemma 5. Assume that A is an Ls-form from x

to y, ∆ is a semi Sl-form from x to y, and A ⊢ ∆

is valid. Then we have the following claims.

(1) A is a connected Ls-form.

(2) sl(x, y) is in ∆.

Proof. Suppose the assumption. Since A is an Ls-

form from x to y, there is a connected Ls-form

∗n−1
i=0 zi 7→ zi+1 ∗ ls(zn, y), where z0 = x and −→z , y

are pairwise distinct. Then A can be written as

∗i∈Izi 7→ zi+1 ∗ ls(zn, y), where I ⊆ {0, . . . , n−1}.
Let k = |FV(A,∆)|. Define s and h by:

s(zi) = i+ 1 for i ∈ {0, 1, . . . , n},
s(y) = n+ k + 2, and

s(w) = 0 if w ̸∈ −→z , y.

dom(h) = {i+1 | i ∈ I} ∪ {n+1, . . . , n+ k+1},
and h(m) = m+ 1 for m ∈ dom(h).

Then |dom(h)| = |I| + k + 1 and n + k + 2 ̸∈
dom(h). We also have s, h |= A. Hence s, h |= B

for some B ∈ ∆ since A ⊢ ∆ is valid by the as-

sumption.

We will now show that B is an Sl-form. Suppose

that B is not an Sl-form. By the assumption, B

has the form ∗j∈Jxj 7→ x′
j and s, h |= B. Then

we obtain contradiction, since |dom(h)| = |J | ≤
|FV(∆)| ≤ k < |dom(h)|. Therefore B is an Sl-

form.

(1) Suppose that A is not a connected Ls-form.

Then the set {0, 1, . . . , n−1}\I is not empty. Take

the smallest element i0 of this set. We will show

Sanshusha pLATEX2ε: 07_kimura : 2020/1/16(12:14)

Vol. 37 No. 1 Feb. 2020 49

contradiction by the case analysis of i0.

We show the case i0 = 0. This case means

x = z0 ̸∈ FV(A) since A does not contain z0 7→ z1.

Then 1 = s(z0) ̸∈ dom(h). Recall the above B.

It satisfies s, h |= B and contains sl(x, z′) since B

is an Sl-form. Then we have 1 = s(x) ∈ dom(h).

Hence we have contradiction.

We show the case i0 > 0. This case we have

s, h |= ∗i0−1
j=0 zj 7→ zj+1 ∗∗j∈I′zj 7→ zj+1 ∗ ls(zn, y),

where I ′ = I \ {0, . . . , i0 − 1} and i0 ̸∈ I ′. Hence

we have i0 + k + 1 ≤ |dom(h)|, since {1, . . . , i0} ∪
{n+ 1, . . . , n+ k + 1} ⊆ dom(h). Now the Sl-form

B has the form sl(x, z′m) ∗ ∗j∈Jz
′
j+1 7→ z′j . Thus

there exist h1 and h2 such that h = h1+h2, s, h1 |=
sl(x, z′m) and s, h2 |= ∗j∈Jz

′
j+1 7→ z′j . By the defi-

nition of h and i0, we have dom(h1) ⊆ {1, . . . , i0}.
Hence we have |dom(h1)| ≤ i0. We also have

|dom(h2)| ≤ |FV(∆)| ≤ k. Therefore we obtain

i0 + k + 1 ≤ |dom(h)| = |dom(h1)| + |dom(h2)| ≤
i0 + k. Contradiction.

Finally we conclude that A is a connected Ls-

form. Hence (1) is shown.

(2) Since A is a connected Ls-form by (1), we

have I = {0, . . . , n − 1}. Hence we also have

dom(h) = {1, . . . , n+ k + 1}. Recall that s, h |= B

and B is an Sl-form. We show B is sl(x, y) by

contradiction. Then B has the form sl(x, z′m) ∗
∗j∈Jz

′
j+1 7→ z′j with J ̸= ∅. Thus there exist h1

and h2 such that h = h1 + h2, s, h1 |= sl(x, z′m)

and s, h2 |= ∗j∈Jz
′
j+1 7→ z′j . Note that dom(h1) =

{1, . . . , s(z′m)− 1} and dom(h2) = {s(z′m), . . . , n+

k+ 1}. Moreover s(z′m) < n+ k+ 2 = s(y) since J

is not empty. Hence z′m ∈ −→z by the definition of s

and z′m ̸= y, We have |dom(h1)| = s(z′m) − 1 ≤ n

and |dom(h2)| ≤ |FV(∆)| ≤ k. From this, we ob-

tain n+k+1 = |dom(h)| = |dom(h1)|+|dom(h2)| ≤
n+ k. This is a contradiction. Therefore sl(x, y) =

B ∈ ∆.

Definition 11 (L-form). A sequent A ⊢ ∆ is called

an L-form from x to y if A is an Ls-form from x to

y and ∆ is a semi Sl-form from x to y.

We define ♯ 7→(e) for a sequent e of CSLM
0 IDω in

the similar way to one of CSL0IDω.

Lemma 6. Let P be a cut-free cyclic proof in

CSLM
0 IDω. Assume that an L-form e from x to

y appears in P as the consequence of an infer-

ence rule (r). Then there is a unique premise e′

of the rule such that e′ is an L-form. Moreover,

♯ 7→(e) < ♯7→(e′) if (r) is (UL), and ♯ 7→(e) = ♯7→(e′)

otherwise.

Proof. This lemma is shown by case analysis of the

rule. Let A and ∆ be the antecedent and the succe-

dent of e, respectively.

The rule (Id) is not the case since, by the defini-

tion of L-form, A contains the ls-predicate, and ∆

does not contain the ls-predicate.

The rule (Cut) is not the case since P is cut-free.

The cases of (Wk) and (Ctr) are immediately

shown.

The case of (UR). By the premise e has the form

A ⊢ ∆1, B ∗ sl(x, z), and B ∗ sl(x, z) is an Sl-form.

The unique premise e′ of e is either A ⊢ ∆1, B∗x 7→
w ∗w 7→ z or A ⊢ ∆1, B ∗ sl(x,w) ∗w 7→ z. In each

case, e′ is an L-form, since both B ∗x 7→ w ∗w 7→ z

and B ∗ sl(x, z) are semi Sl-forms. We also have

♯ 7→(e) = ♯7→(e′).

The case of (UL). By the premise e has the form

A1 ∗ ls(z, y) ⊢ ∆, and A1 ∗ ls(z, y) is an Ls-form.

Thus e has a unique premise whose antecedent con-

tains the ls-predicate. Let e′ be the premise. Then

e′ has the form A1∗z 7→ z′∗ls(z′, y) ⊢ ∆, where z′ is

a fresh variable. We note that A1 ∗z 7→ z′ ∗ ls(z′, y)
is an Ls-form since A1 ∗ ls(z, y) is an Ls-form and

z′ is fresh. Therefore e′ is an L-form. We also have

♯ 7→(e) < ♯ 7→(e′).

The case of (∗). Recall that e contains only one

ls-predicate. Hence there is a unique premise of

e that contains the ls-predicate. Let e′ be the

premise. Let A′ and ∆′ be the antecedent and

succedent of e′. Then A′ is an Ls-form. Since ∆ is

a semi Sl-form, ∆′ is also a semi Sl-form. There-

fore e′ is an L-form. Note that all 7→ of A must

be contained in A′. Otherwise A′ is not a con-

nected Ls-form. This contradicts Lemma 5. Hence

we have ♯ 7→(e) = ♯7→(e′).

Lemma 7. Suppose that there is a cut-free cyclic

proof P of ls(x, y) ⊢ sl(x, y) in CSLM
0 IDω. Then its

graph G(P) contains an infinite path (ei)i∈ω such

that (a) e0 is ls(x, y) ⊢ sl(x, y), and (b) each ei is

an L-form.

Proof. Let D be the underlying derivation tree of

P. We inductively define a finite path e0, e1, . . . , en

of D. Let e0 be ls(x, y) ⊢ sl(x, y) at the root po-

sition of D. Suppose that e0, . . . , ek are already

defined. If ek is a bud, then finish making the

Sanshusha pLATEX2ε: 07_kimura : 2020/1/16(12:14)

50 コンピュータソフトウェア

...

...

(eq−1) : ∗q−2
i=0 xi 7→ xi+1 ∗ ls(xq−1, y) ⊢ sl(x, y)

....
(em+1) : ∗m−1

i=0 xi 7→ xi+1 ∗ xm 7→ xm+1 ∗ ls(xm+1, y) ⊢ sl(x, y)

(em) : ∗m−1
i=0 xi 7→ xi+1 ∗ ls(xm, y) ⊢ sl(x, y)

(UL)

....
(ep) = (eq) : ∗p−1

i=0 xi 7→ xi+1 ∗ ls(xp, y) ⊢ sl(x, y)
....

(e1) : x0 7→ x1 ∗ ls(x1, y) ⊢ sl(x, y)

(e0) : ls(x, y) ⊢ sl(x, y)
(UL)

In the above proof figure, x = x0 and each ei is the name of the corresponding sequent, the sequence (ei)i∈ω is a

path, the sequence of the underlined list predicates forms an infinite progress trace that follows the path, and eq is

the companion of the bud eq−1.

Fig. 4 Proof of Theorem 5

path with n = k. Otherwise there exists a unique

premise e′ of ek by Lemma 6 such that e′ is an

L-form. Then we define ek+1 by e′. Note that

this construction successfully terminates, since any

L-form cannot be the conclusion of (Id) and the

number of sequents in D is finite.

We claim that all L-forms of D are on the path,

since the premise e′′ of ek (k < n) other than ek+1

does not contain the ls-predicate and all sequents

of the subtree of D starting from e′′ do not contain

the ls-predicate. Hence the companion of the bud

en appears in the path (ei)i≤n.

Finally we obtain the required infinite path

(ei)i∈ω of G(P) by defining en+1 = ep, where ep

is the companion of en.

Finally we show Theorem 5. The proof is done

by combining Lemmas 6 and 7. The proof figure

given in Fig 4 explains the situation of the following

proof.

Proof of Theorem 5. Suppose that there is a cut-

free cyclic proof P of ls(x, y) ⊢ sl(x, y) in

CSLM
0 IDω. We will show a contradiction. By

Lemma 7, there is an infinite path (ei)i∈ω of G(P)

such that e0 is ls(x, y) ⊢ sl(x, y) and each ei is an

L-form. By the global trace condition, there ex-

ist m ∈ ω and an infinite progressing trace (τi)i≥m

that follows the infinite path (ei)i≥m. By the con-

struction of the path, the bud appears infinitely

many times in the path. Let ep and eq be the first

and the second occurrences of the bud in the path.

Then there is at least one progressing point be-

tween τp and τq. Hence, we have contradiction since

♯ 7→(ep) < ♯ 7→(eq) = ♯7→(ep) by Lemma 6. Therefore

there is no cut-free cyclic proof of ls(x, y) ⊢ sl(x, y)

in CSLM
0 IDω.

By combining Proposition 4 and Theorem 5, we

can obtain our second main result.

Corollary 2. The cyclic proof system CSLM
0 IDω

does not enjoy the cut-elimination property.

5 Conclusion and future work

In this paper, we have proved that cut-

elimination fails in cyclic proof systems for separa-

tion logic. We have shown the failure by presenting

counter-example sequents that can be proven with

cuts but not without cuts. The counter-example se-

quents are reasonably simple formulas about singly-

linked lists, therefore leading one to believe that

some form of cuts is necessary for practical uses of

cyclic proofs in separation logic. Because it is non-

trivial to infer arbitrary cut formulas in general,

we envisage automatic provers to include restricted

forms of cuts that are suitable for practical proof

searches. For instance, the induction hypothesis

synthesis pattern employed in Chu et al. [10] may

be a reasonable approach to this.

As future work, we plan to investigate the power

of various strategies used in cyclic-proof-based

provers that can be characterized as restricted

forms of cuts. For instance, the approach by Chu

et al. [10] can be seen as a cyclic proof system with

cuts restricted to only those against buds. An open

Sanshusha pLATEX2ε: 07_kimura : 2020/1/16(12:14)

Vol. 37 No. 1 Feb. 2020 51

question that seems worth investigating is whether

all sequents provable in cyclic proof systems are

provable with cuts only against buds.

As another line of future work, we would like

to investigate whether the cut-elimination prop-

erty can be recovered by restricting the usage of

inductive definitions. Recall that our counter-

examples contain multiple inductive definitions of

the same singly-linked list data structure. Perhaps

cut-elimination can be recovered if such a situation

is avoided.

Finally, we would like to investigate whether cut-

elimination fails or not in cyclic proof systems for

logics different from separation logic, such as first-

order logic and bunched implication logic [6][7]. An

important difference between the cyclic proof sys-

tems for separation logic in this paper and those

in [6][7] is the existence of contraction and weaken-

ing on antecedents, which precludes a direct appli-

cation of the proof technique of this paper.

Acknowledgments. We wish to thank James

Brotherston for valuable discussions about cyclic

proofs. We also thank the anonymous refer-

ees for their helpful comments. This work is

partially supported by JSPS KAKENHI Grant

Numbers JP16H05856, JP17H01720, JP18K11161,

JP17H01723, JP18K19787, and by JSPS Core-to-

Core Program (A. Advanced Research Networks).

References

[1] Berdine, J., Calcagno, C., O’Hearn, P. W. : A

Decidable Fragment of Separation Logic, in 24th In-

ternational Conference of Foundations of Software

Technology and Theoretical Computer Science, Lo-

daya, K. and Mahajan, M. (eds.), Lecture Notes

in Computer Science 3328, Springer-Verlag, 2004,

pp. 97–109.

[2] Berdine, J., Calcagno, C., and O’Hearn, P. W. :

Symbolic Execution with Separation Logic, in Third

Asian Symposium of Programming Languages and

Systems (APLAS ’05), Yi, K. (eds.), Lecture Notes

in Computer Science 3780, Springer-Verlag, 2005,

pp. 52–68.

[3] Berardi, S. and Tatsuta, M. : Classical Sys-

tem of Martin-Löf’s Inductive definitions is not

equivalent to cyclic proof system, in 20th Interna-

tional Conference on Foundations of Software Sci-

ence and Computation Structures (FoSSaCS ’17),

EsparzaAndrzej, J. and Murawski, S. (eds.), Lecture

Notes in Computer Science 10203, Springer-Verlag,

2017, pp. 301–317.

[4] Berardi, S. and Tatsuta, M. : Equivalence of

inductive definitions and cyclic proofs under arith-

metic, in 32nd Annual IEEE Symposium on Logic

in Computer Science (LICS ’17), Dawar, A. and

Grädel, E. (eds.), ACM Press, 2017, pp. 1–12.

[5] Brotherston, J. : Sequent calculus proof systems

for inductive definitions, Ph.D thesis, Edinburgh

University, 2006.

[6] Brotherston, J. : Formalised Inductive Reason-

ing in the Logic of Bunched Implications, in 14th

International Symposium of Static Analysis (SAS

’07), Nielson, H. R. and Filé, G. (eds.), Lecture

Notes in Computer Science 4634, Springer-Verlag,

2007, pp. 87–103.

[7] Brotherston, J.and Simpson, A. : Sequent calculi

for induction and infinite descent, Journal of Logic

and Computation, Vol. 21, No. 6 (2011), pp. 1177–

1216.

[8] Brotherston, J., Distefano, D., and Petersen,

R. L. : Automated cyclic entailment proofs in

separation logic, in 23rd International Conference

on Automated Deduction (CADE-23), Bjørner, N.

and Sofronie-Stokkermans, V. (eds.), Lecture Notes

in Computer Science 6803, Springer-Verlag, 2011,

pp. 131–146.

[9] Brotherston, J., Gorogiannis, N., and Pe-

tersen, R. L. : A Generic Cyclic Theorem Prover,

in 10th Asian Symposium of Programming Lan-

guages and Systems (APLAS ’12), Jhala. R. and

Igarashi, A. (eds.), Lecture Notes in Computer Sci-

ence 7705, Springer-Verlag, 2012, pp. 350–367.

[10] Chu, D. H., Jaffar, J., and Trinh, M. T. : Auto-

matic induction proofs of data-structures in imper-

ative programs, in 36th ACM SIGPLAN Confer-

ence on Programming Language Design and Imple-

mentation (PLDI ’15), Grove, D. and Blackburn, S.

(eds.), ACM Press, 2015, pp. 457–466.

[11] Das, A. and Pous, D. : Non-wellfounded proof

theory for (Kleene+action)(algebras+lattices), in

27th EACSL Annual Conference on Computer Sci-

ence Logic (CSL ’18), Ghica, D. R. and Jung, A.

(eds.), LIPIcs, Vol. 119, Schloss Dagstuhl - Leibniz-

Zentrum fuer Informatik, 2018, pp. 19:01–19:18.

[12] Doumane, A.: On the infinitary proof theory of

logics with fixed points, PhD thesis, Paris 7, 2017.

[13] Nguyen, H. H. and Chin, W. N. : Enhancing

Program Verification with Lemmas, in 20th Interna-

tional Conference of Computer Aided Verification

(CAV ’08), Gupta, A. and Malik, S. (eds.), Lecture

Notes in Computer Science 5123, Springer-Verlag,

2008, pp. 355–369.

[14] Nollet, R., Saurin, A., and Tasson, C. : Local Va-

lidity for Circular Proofs in Linear Logic with Fixed

Points in 27th EACSL Annual Conference on Com-

puter Science Logic (CSL ’18), Ghica, D. R. and

Jung, A. (eds.), LIPIcs, Vol. 119, Schloss Dagstuhl

- Leibniz-Zentrum fuer Informatik, 2018, pp. 35:01–

35:23.

Sanshusha pLATEX2ε: 07_kimura : 2020/1/16(12:14)

52 コンピュータソフトウェア

[15] Reynolds, J. C. : Separation Logic: A Logic for

Shared Mutable Data Structures, in 17th Annual

IEEE Symposium on Logic in Computer Science

(LICS ’02), Plotkin, G. (ed.), ACM Press, 2002,

pp. 55–74.

[16] Simpson, A. : Cyclic Arithmetic Is Equivalent to

Peano Arithmetic, in 20th International Conference

on Foundations of Software Science and Computa-

tion Structures (FoSSaCS ’17), EsparzaAndrzej, J.

and Murawski, S. (eds.), Lecture Notes in Computer

Science 10203, Springer-Verlag, 2017, pp. 283–300.

[17] Ta, Q. T., Le, T. C., Khoo, S. C., and

Chin, W. N. : Automated Mutual Explicit Induc-

tion Proof in Separation Logic, in 21st Interna-

tional Symposium of Formal Methods (FM ’16),

Fitzgerald, J. S., Heitmeyer, C. L., Gnesi, S., and

Philippou, A. (eds.), Lecture Notes in Computer

Science 9995, Springer-Verlag, 2016, pp. 659–676.

[18] Ta, Q. T., Le, T. C., Khoo, S. C., and

Chin, W. N. : Automated lemma synthesis in

symbolic-heap separation logic, in 45th ACM SIG-

PLAN Symposium on Principles of Programming

Languages (POPL ’18), Vol. 2, ACM Press, 2018,

Article No.9.

木 村 大 輔

2007年総合研究大学院大学複合科学
研究科情報学専攻修了．博士 (情報
学)．国立情報学研究所特任研究員を
経て 2016 年 4 月より東邦大学理学
部情報科学科講師．プログラミング

言語理論，型理論，数理論理学に興味を持つ．現在は
分離論理に基づくプログラム解析器の理論構築およ
びその実装を行っている．情報処理学会会員．

中 澤 巧 爾

2002年京都大学大学院理学研究科博
士後期課程修了．同年，京都大学大
学院情報学研究科助手．2007年，同
研究科助教．2015年より名古屋大学
大学院情報科学研究科准教授．京都

大学博士 (理学)．プログラミング言語理論，型システ
ムや，それらの論理学との関連に興味を持つ．日本ソ
フトウェア科学会，日本数学会，EATCS各会員．第
32回日本ソフトウェア科学会大会高橋奨励賞を受賞．

寺内多智弘

2006 年 カ リ フ ォ ル ニ ア 大 学
バークレー校博士課程後期課程
修了．Ph.D.(Computer Science)．
2007 年，東北大学大学院情報科学
研究科助教．2011年，名古屋大学大

学院情報科学研究科准教授．2014年，北陸先端科学
技術大学院大学情報科学研究科教授．2017年より早
稲田大学情報理工学科教授．プログラミング言語研
究に興味を持つ．ACM，情報処理学会各会員．

海 野 広 志

2009年東京大学大学院情報理工学系
研究科コンピュータ科学専攻博士課
程修了．博士 (情報理工学)．東北大
学大学院情報科学研究科研究支援者，
東京大学大学院情報理工学系研究科

特任研究員を経て 2012年，筑波大学システム情報系
情報工学域助教．2017年，同准教授．プログラミン
グ言語理論．形式手法に興味を持つ．ACM，日本ソ
フトウェア科学会各会員．

