On Bounding Problems of Quantitative
Information Flow

Hirotoshi Yasuoka Tachio Terauchi
Tohoku University Nagoya University
yasuoka@kb.ecei.tohoku.ac.jp terauchi@is.nagoya-u.ac.jp

February 2, 2012

Abstract

Researchers have proposed formal definitions of quantitative informa-
tion flow based on information theoretic notions such as the Shannon
entropy, the min entropy, the guessing entropy, belief, and channel ca-
pacity. This paper investigates the hardness of precisely checking the
quantitative information flow of a program according to such definitions.
More precisely, we study the “bounding problem” of quantitative infor-
mation flow, defined as follows: Given a program M and a positive real
number ¢, decide if the quantitative information flow of M is less than
or equal to gq. We prove that the bounding problem is not a k-safety
property for any k (even when q is fixed, for the Shannon-entropy-based
definition with the uniform distribution), and therefore is not amenable
to the self-composition technique that has been successfully applied to
checking non-interference. We also prove complexity theoretic hardness
results for the case when the program is restricted to loop-free boolean
programs. Specifically, we show that the problem is PP-hard for all defi-
nitions, showing a gap with non-interference which is coNP-complete for
the same class of programs. The paper also compares the results with
the recently proved results on the comparison problems of quantitative
information flow.

Keywords: security, quantitative information flow, program verification

1 Introduction

We consider programs containing high security inputs and low security outputs.
Informally, the quantitative information flow problem concerns the amount of
information that an attacker can learn about the high security input by ex-
ecuting the program and observing the low security output. The problem is
motivated by applications in information security. We refer to the classic by
Denning [12] for an overview.

In essence, quantitative information flow measures how secure, or insecure,
a program (or a part of a program —e.g., a variable-) is. Thus, unlike non-
interference [10, 13], that only tells whether a program is completely secure or
not completely secure, a definition of quantitative information flow must be able
to distinguish two programs that are both interferent but have different degrees
of “secureness.”

For example, consider the following programs.

My =ifH=gthenO := 0Oelse O :=1
=0 = H

In both programs, H is a high security input and O is a low security output.
Viewing H as a password, M; is a prototypical login program that checks if
the guess ¢ matches the password.! By executing M;, an attacker only learns
whether H is equal to g, whereas she would be able to learn the entire content of
H by executing M>. Hence, a reasonable definition of quantitative information
flow should assign a higher quantity to M than to M7, whereas non-interference
would merely say that M; and Ms are both interferent, assuming that there are
more than one possible values of H.

Researchers have attempted to formalize the definition of quantitative infor-
mation flow by appealing to information theory. This has resulted in definitions
based on the Shannon entropy [12, 7, 19], the min entropy [28], the guessing
entropy [17, 1], belief [8], and channel capacity [22, 20, 26]. All of these defini-
tions map a program (or a part of a program) onto a non-negative real number,
that is, they define a function X such that given a program M, X (M) is a non-
negative real number. (Concretely, X is SE[u] for the Shannon-entropy-based
definition with the distribution u, ME[u] for the min-entropy-based definition
with the distribution p, GE[u] for the guessing-entropy-based definition with
the distribution u, and CC for the channel-capacity-based definition.?) There-
fore, a natural verification problem for quantitative information flow is to decide,
given M and a quantity ¢ > 0, if X(M) < q. The problem is well-studied for
the case ¢ = 0 as it is actually equivalent to checking non-interference (cf. Sec-
tion 2.1). The problem is open for ¢ > 0 . We call this the bounding problem of
quantitative information flow.

The problem has a practical relevance as a user is often interested in know-
ing if her program leaks information within some allowed bound. That is, the
bounding problem is a form of quantitative information flow checking problem
(as opposed to inference). Much of the previous research has focused on infor-
mation theoretic properties of quantitative information flow and approximate
(i.e., incomplete and/or unsound) algorithms for checking and inferring quanti-
tative information flow. To fill the void, in a recent work [32], we have studied
the hardness and possibilities of deciding the comparison problem of quantitative
information flow, which is the problem of precisely checking if the information

1Here, for simplicity, we assume that g is a program constant. See Section 2 for modeling
attacker/user (i.e., low security) inputs.
2The belief-based definition takes additional parameters as inputs, and is discussed below.

flow of one program is larger than that of the other, that is, the problem of
deciding if X (M;) < X(Ms) given programs M; and Ms. The study has lead to
some remarkable results, summarized in Section 3 and Section 4 of this paper
to contrast with the new results on the bounding problem. However, the hard-
ness results on the comparison problem do not imply hardness of the bounding
problem.? Thus, this paper settles the open question.

We summarize the main results of the paper below. Here, X is SE[U],
ME[U], GE[U] or CC, where U is the uniform distribution.

e Checking if X(M) < q is not a k-safety property [29, 9] for any k.

e Restricted to loop-free boolean programs, checking if X (M) < ¢ is PP-
hard.

Roughly, a verification problem being k-safety means that it can be reduced to
a standard safety problem, such as the unreachability problem, via self com-
position [3, 11]. For instance, non-interference is a 2-safety property (tech-
nically, for the termination-insensitive case?), and this has enabled its pre-
cise checking via a reduction to a safety problem via self composition and
applying automated safety verification techniques [29, 25, 31]. Also, our re-
cent work [32] has shown that deciding the comparison problem of quanti-
tative information flow for all distributions (i.e., checking if Yu.SE[u](M;) <
SE[p)(Mz2), Vu.ME[u](My) < ME[p](Ms), Vp.GE[u](My) < GE[u](Mz), and
VuYh, £.BE[{j1, h,€)](M;1) < BE[{i1, h,£)](M2)?) are 2-safety problems (and in
fact, all equivalent).

We also prove a complexity theoretic gap with these related problems. We
have shown in the previous paper [32] that, for loop-free boolean programs, both
checking non-interference and the above comparison problem with universally
quantified distributions are coNP-complete. (PP is believed to be strictly harder
than coNP. In particular, coNP = PP implies the collapse of the polynomial
hierarchy to level 1.)

Therefore, the results suggest that the bounding problems of quantitative in-
formation flow are harder than the related problems of checking non-interference
and the quantitative information flow comparison problems with universally
quantified distributions, and may require different techniques to solve (i.e., not
self composition).

The belief-based quantitative information flow [8] differs from the definitions
above in that it focuses on the information flow from a particular execution

3But, they imply the hardness of the inference problem because we can compare X (M)
and X' (M2) once we have computed them. We also note that the hardness of the bounding
problems implies that of the comparison problems because we can reduce the bounding prob-
lem X (M) < g to a comparison problem that compares M with a program whose information
flow is g. (But, the reverse direction does not hold.)

4We restrict to terminating programs in this paper. (The termination assumption is non-
restrictive because we assume safety verification as a blackbox routine.)

5See below for the notation BE[{u, h,£)](M) denoting the belief-based quantitative infor-
mation flow of M with respect to the experiment (u,h,£). The result for the belief-based
definition is proven in the extended version of the paper that is under submission [33].

of the program (called experiment) rather than the information flow from all
executions of the program.® Therefore, we define and study the hardness of two
types of bounding problems for the belief-based definition:

(1) BE[(nh, O))(M) < q
(2) Vh, L.BE[{u, h, 0)](M) < q

Here, BE[{u, h, £)](M) denotes the belief-based information flow of M with the
experiment (u, h, £) where h, ¢ are the particular (high-security and low-security)
inputs. Note that the problem (2) checks the bound of the belief-based quan-
titative information flow for all inputs whereas (1) checks the information flow
for a particular input. This paper proves that neither of these problems are
k-safety for any k, and are PP-hard for loop-free boolean programs.

We note that the above results are for the case the quantity ¢ is taken to be
an input to the bounding problems. We show that when fixing the parameter
q constant, some of the problems become k-safety under certain conditions for
different k’s (cf. Section 3.1, 3.2, and 3.3).

We also define and study the hardness of the following bounding problems
that check the bound over all distributions.

1) Vu.SE[p](M) < q
2) Vu.ME[p)(M) < q

(1)

(2)

(3) Vu.GE[u)(M) < q
(4) Yu.BE[(, h, £)](M)
(5)

<q
5) W, b, C.BE (1, h, H](M) < g

We show that except for (4) and (5), these problems are also not k-safety for
any k, and are PP-hard for loop-free boolean programs, when ¢ is not a constant
(but are k-safety for various k’s when ¢ is held constant). For the problems (4)
and (5), we show that the problems are actually equivalent to that of checking
non-interference. (1), (2), and (3) are proven by showing that the problems
correspond to various “channel capacity like” definitions of quantitative infor-
mation flow.

The rest of the paper is organized as follows. Section 2 reviews the existing
information-theoretic definitions of quantitative information flow and formally
defines the bounding problems. Section 3 proves that the bounding problems are
not k-safety problems for SE[U], ME[U], GE[U], and CC. (Section 3.1 shows
that when fixing the parameter ¢ constant, some of them become k-safety under
certain conditions for different k’s.) Section 3.2 shows k-safety results for the
belief-based bounding problems, and Section 3.3 shows k-safety results for the

6Clarkson et. al. [8] also propose a definition which averages the quantitative information
flow over a distribution of the inputs h and £. Note that a hardness result for (1) below implies
the hardness result of the bounding problem for this problem as we may take the distribution
to be a point mass.

bounding problems that check the bound for all distributions. Section 4 proves
complexity theoretic hardness results for the bounding problems for loop-free
boolean programs for SE[U], ME[U], GE[U], and CC, and Section 4.1 proves
those for the belief-based bounding problems and the bounding problems that
check the bound for all distributions. Section 5 discusses some implications of
the hardness results. Section 6 discusses related work, and Section 7 concludes.
All the proofs appear in Appendix A.

2 Preliminaries

We introduce the information theoretic definitions of quantitative information
flow that have been proposed in literature. First, we review the notion of the
Shannon entropy [27], H[u](X), which is the average of the information content,
and intuitively, denotes the uncertainty of the random variable X.

Definition 2.1 (Shannon Entropy). Let X be a random variable with sample
space X and p be a probability distribution associated with X. (We write u
explicitly for clarity.) The Shannon entropy of X is defined as

1
=2 nX = o)log o

reX
(The logarithm is in base 2.)

Next, we define conditional entropy. Informally, the conditional entropy of
X given Y denotes the uncertainty of X after knowing Y.

Definition 2.2 (Conditional Entropy). Let X and Y be random variables with
sample spaces X and Y, respectively, and p be a probability distribution asso-

ciated with X and Y. Then, the conditional entropy of X given Y, written
H[u](X|Y) is defined as

PI(X[Y) =D p(Y = g)H[u(X]Y = y)
yeY

where

HIp(X]Y =) = 5,y (X = Y =) log —gmdbo—s

— —) = uX=z,Y=y)
WX =alY =y) = B 525

Next, we define (conditional) mutual information. Intuitively, the condi-

tional mutual information of X and Y given Z represents the mutual dependence
of X and Y after knowing Z.

Definition 2.3 (Mutual Information). Let X,Y and Z be random variables
and v be an associated probability distribution.” Then, the conditional mutual
information of X and 'Y given Z is defined as
(XY |2) = H[p)(X]Z) = H[p)(X]Y, Z)
= H[p(Y]Z) - H[p(V]X, 2)

7We abbreviate the sample spaces of random variables when they are clear from the context.

Let M be a program that takes a high security input H and a low security
input L, and gives the low security output O. For simplicity, we restrict to
programs with just one variable of each kind, but it is trivial to extend the
formalism to multiple variables (e.g., by letting the variables range over tuples).
Also, for the purpose of the paper, unobservable (i.e., high security) outputs are
irrelevant, and so we assume that the only program output is the low security
output. Let u be a probability distribution over the values of H and L. Then,
the semantics of M can be defined by the following probability equation. (We
restrict to terminating deterministic programs in this paper.)

pO=o0)= > pH=hL=20
h,¢ € H,L
M(h,t) =o

Note that we write M (h,£) to denote the low security output of the program
M given inputs h and . Now, we are ready to introduce the Shannon-entropy
based definition of quantitative information flow (QIF) [12, 7, 19].

Definition 2.4 (Shannon-Entropy-based QIF). Let M be a program with a high
security input H, a low security input L, and a low security output O. Let p
be a distribution over H and L. Then, the Shannon-entropy-based quantitative
information flow is defined

SE[p)(M) = T[u|(O; H|L)
= H[p[(H|L) = H[u](H|O, L)

Intuitively, H[u](H|L) denotes the initial uncertainty knowing the low secu-
rity input and H[u](H|O, L) denotes the remaining uncertainty after knowing
the low security output.

As an example, consider the programs M; and Ms from Section 1. For
concreteness, assume that g is the value 01 and H ranges over the space
{00,01,10,11}. Let U be the uniform distribution over {00,01,10,11}, that
is, U(h) = 1/4 for all h € {00,01,10,11}. Computing their Shannon-entropy
based quantitative information flow, we have,

SE[U)(My) = H[U|(H) — H[U](H|O) = log4 — 3 log 3 ~ .81128
SE[U](M,) = H[U)(H) — H[U](H|O) = log4 —log1 = 2

Hence, if the user was to ask if SE[U](M;) < 1.0, that is, “does M; leak more
than one bit of information (according to SE[U])?”, then the answer would be
no. But, for the same query, the answer would be yes for Ms.

Next, we introduce the min entropy, which Smith [28] recently suggested as
an alternative measure for quantitative information flow.

Definition 2.5 (Min Entropy). Let X and Y be random variables, and p be an
associated probability distribution. Then, the min entropy of X is defined

Hoo[p](X) = log Vi(X)

and the conditional min entropy of X given'Y is defined

Hoo[u](X[Y) = log W

where
Vipl(X) max,ex (X =)
V(XY =y) = maxzex (X =Y =y)
VIpl(XT]Y) Y oyey Y = y)V[ul(X]Y =y)

Intuitively, V[u](X) represents the highest probability that an attacker

guesses X in a single try. We now define the min-entropy-based definition of
quantitative information flow.

Definition 2.6 (Min-Entropy-based QIF). Let M be a program with a high
security input H, a low security input L, and a low security output O. Let
w be a distribution over H and L. Then, the min-entropy-based quantitative
information flow is defined

ME[u](M) = Hoo] (H|L) = Hoou](H|O, L)

Whereas Smith [28] focused on programs lacking low security inputs, we
extend the definition to programs with low security inputs in the definition
above. It is easy to see that our definition coincides with Smith’s for programs
without low security inputs. Also, the extension is arguably natural in the sense
that we simply take the conditional entropy with respect to the distribution over
the low security inputs.

Computing the min-entropy based quantitative information flow for our run-
ning example programs M; and My from Section 1 with the uniform distribu-
tion, we obtain,

ME[U](My) = Hoo[U](H) — Hoo[U](H|O) = log4 — log2 = 1
ME[U](My) = Hoo[U](H) — Hoo[U](H|O) = log4 — log 1 = 2

Hence, if a user is to check whether MFE[U] is bounded by ¢ for 1 < ¢ < 2, then
the answer would be yes for M7, but no for Ms.

Next, we introduce the guessing-entropy based definition of quantitative in-
formation flow [21, 17, 1].

Definition 2.7 (Guessing Entropy). Let X and Y be random wvariables, and
w be an associated probability distribution. Then, the guessing entropy of X is
defined

Glul(X) = > ixu(X =)

1<i<m

where m = |X| and x1,x2, ..., Ty satisfies Vi, 5.4 < j = pw(X = z;) > p(X =

xj).
The conditional guessing entropy of X given Y is defined
WX = S (Y = g)glul(X]Y =)
yeY

where

GIIXTY =y) =3 cicm i X u(X =x;]Y =)
m=|X| and Vi,ji<j= p(X =Y =y) > p(X = ;Y =y)

Intuitively, G[u](X) represents the average number of times required for the
attacker to guess the value of X. We now define the guessing-entropy-based
quantitative information flow.

Definition 2.8 (Guessing-Entropy-based QIF). Let M be a program with a
high security input H, a low security input L, and a low security output O. Let
w be a distribution over H and L. Then, the guessing-entropy-based quantitative
information flow is defined

GE[u](M) = G[u|(H|L) — G[u](H|O, L)

Like with the min-entropy-based definition, the previous research on
guessing-entropy-based quantitative information flow only considered programs
without low security inputs [17, 1]. But, it is easy to see that our definition with
low security inputs coincides with the previous definitions for programs with-
out low security inputs. Also, as with the extension for the min-entropy-based
definition, it simply takes the conditional entropy over the low security inputs.

We test GE on the running example from Section 1 by calculating the quan-
tities for the programs M; and My with the uniform distribution.

GE[U](M,) = G[U|(H) - G[UI(H|0) =
GE[U](Ms) = G[U|(H) - G[UI(H|0) =

njonojot

Hence, if a user is to check whether GE[U] is bounded by ¢ for 0.75 < ¢ < 1.5,
then the answer would be yes for M7, but no for Ms.

Next, we introduce the belief-based definition of quantitative information
flow [8]. The belief-based definition computes the information leak from a single
execution of the program, called an experiment.

Definition 2.9 (Experiment). Let u be a distribution over a high-security input
such that Yh.u(h) > 0, he be a high-security input, and g be a low-security
input. Then, the experiment £ is defined to be the tuple {u, he, le).8

Intuitively, the distribution p represents the attacker’s belief about the user’s
high security input selection, ¢¢ denotes the attacker’s low-security input selec-
tion, and hge denotes the user’s actual selection. Then, the belief-based quanti-
tative information flow, which is the information flow of individual experiments,
is defined as follows.

Definition 2.10 (Belief-based QIF). Let M be a program with a high security
mput, a low security input, and a low security output. Let £ be an experiment

8Clarkson et. al. [8] also include the output and the program itself as part of the experiment.
In this paper, an experiment consists solely of the input and the distribution.

such that € = (u, he,Le). Then, the belief-based quantitative information flow
is defined

BE[E)(M) = D(s —) — D{jilog — he)
where
og = M(he, le)
h=Mn.if h="1 then 1else 0
fes (0g) = Zhe{h/|M(h’,25):Og} pu(h)
ptlog = Ah.if M(h,ls) = og then - _ else 0

‘o Heg (05)
D(u—) = 32, /' (h) log &2

Here, D(un — ') is the relative entropy (or, distance) of p and u', and
quantifies the difference between the two distributions.” Note that h denotes
the point mass distribution at h. Intuitively, the belief-based quantitative in-
formation flow expresses the difference between the attacker’s belief about the
high security input and the output of the experiment. It can be shown that
BE[E)(M) is equivalent to self-information (for M deterministic), that is, the
negative logarithm of the probability the event occurs (i.e., in this case, the
output occurs).

Lemma 2.11. Let p be a belief, hg be a high-security input, Le be a low-security
input. Then, BE[(u, he,Le)](M) = —1og Spe (nr| M (h 0)=M(he)y H(R).

Computing the belief-based quantitative information flow for our running
example programs M; and M5 from Section 1 with the uniform distribution, we
obtain,

o h e {00,10,11}
BE[(U, h)](My) = —log U(Mi () = —1ogz ~ 41503

e h =01]
BE[(U, m)](My) = —log U(My(h)) = —log 7 =2

And, for any h € {00,01, 10,11},

BE[(U, W](My) = — log U(My(h)) = ~log { =2

Therefore, if the user was to ask if BE[(U,h)] is bounded by 1.0 for h = 00,
then the answer would be yes for M; but no for Ms. But, if the user was to ask
if BE[(U, h)] is bounded by 1.0 for all h, then the answer would be no for both
M1 and MQ.

Finally, we introduce the definition of quantitative information flow based
on channel capacity [22, 20, 26], which is defined to be the maximum of the
Shannon-entropy based quantitative information flow over the distribution.

9Here, we follow [8] and use the notation D(u — p') over the more standard notation
D ||)-

Definition 2.12 (Channel-Capacity-based QIF). Let M be a program with a
high security input H, a low security input L, and a low security output O.
Then, the channel-capacity-based quantitative information flow is defined

CC(M) = mf,xI[,u](O; H|L)

Unlike the other definitions above, the channel-capacity based definition of
quantitative information flow is not parameterized by the distribution over the
inputs. As with the other definitions, let us test the definition on the running
example from Section 1 by calculating the quantities for the programs M; and
M22

CC (M) = max, I[u](O;H) =1

CC(Ms) = max, Z[p](O; H) =2
Note that CC (M) (resp. CC(Mz)) is equal to ME[U](My) (resp. ME[U](Mz)).
This is not a coincidence. In fact, it is known that CC(M) = ME[U](M) for
all programs M without low security inputs [28].

2.1 Non-interference

We recall the notion of non-interference [10, 13].

Definition 2.13 (Non-intereference). A program M is said to be non-interferent
iff for any hyh' e H and £ € L, M(h,£) = M(K,).

It can be shown that for the definitions of quantitative information flow X
introduced above, X (M) < 0 iff M is non-interferent.'® That is, the bounding
problem (which we only officially define for positive bounds —see Section 2.2-)
degenerates to checking non-interference when 0 is given as the bound.

Theorem 2.14. Let p be a distribution such that Vh € H, ¢ € L.u(h,¢) > 0.
Then,

o M is non-interferent if and only if SE[u](M) < 0.

o M is non-interferent if and only if ME[u](M) < 0.

o M is non-interferent if and only if GE[u](M) < 0.

e M is non-interferent if and only if BE[(i/, h, £)](M) < 0.11
e M is non-interferent if and only if CC(M) < 0.

The equivalence result on the Shannon-entropy-based definition is proven by
Clark et al. [6]. The proofs for the other four definitions are given in Appendix A.

10Technically, we need the non-zero-ness condition on the distribution. (See below.)
M Recall Definition 2.10 that u’ is a distribution over H such that u’(h) > 0 for all h € H.

10

2.2 Bounding Problem

We define the bounding problem of quantitative information flow for each defini-
tion introduced above. The bounding problem for the Shannon-entropy based
definition Bgg[u] is defined as follows: Given a program M and a positive real
number ¢, decide if SE[u](M) < ¢.'? Similarly, we define the bounding problems
for the other three definitions Byg[u], Ber(p], and Bee as follows.

Buelp] = {(M,q) | ME[u)(M) < q}
Begplp] = {(M,q)| GE[u)(M) < q}
Bee = {(M,q)| CC(M) < q}

We defer the definitions of the belief-based bounding problems to Section 3.2.

3 K-Safety Property

We show that none of the bounding problems are k-safety problems for any k.
Informally, a program property is said to be a k-safety property [29, 9] if it
can be refuted by observing k number of (finite) execution traces. A k-safety
problem is the problem of checking a k-safety property. Note that the standard
safety property is a l-safety property. An important property of a k-safety
problem is that it can be reduced to a standard safety (i.e., 1-safety) problem,
such as the unreachability problem, via a simple program transformation called
self composition [3, 11]. This allows one to verify k-safety problems by applying
powerful automated safety verification techniques [2, 14, 24, 4] that have made
remarkable progress recently.

As stated earlier, we prove that no bounding problem is a k-safety property
for any k. (First, we prove the result for SE, ME, GE, and CC, and defer the
result for BE to Section 3.2.) To put the result in perspective, we compare it
to the results of the related problems, summarized below. Here, X is SE[U],
ME[U], GE[U], or CC, and Y is SE, ME, or GE. (Recall that U denotes the
uniform distribution.)

(1) Checking non-interference is a 2-safety problem, but it is not 1-safety.
(2) Checking X(M;) < X(Ms) is not a k-safety problem for any k.
(3) Checking V. Y[p](M1) < V[u](Ms) is a 2-safety problem.

The result (1) on non-interference is classic (see, e.g., [23, 3, 11]). The re-
sults (2) and (3) on comparison problems are proven in our recent paper [32].
Therefore, this section’s results imply that the bounding problems are harder to
verify (at least, via the self-composition approach) than non-interference and the
quantitative information flow comparison problems with universally quantified
distributions.

I2Note that we treat p as a parameter of the bounding problem rather than as an input.

11

Let Prog be the set of all programs, and R™ be the set of positive real num-
bers. Let [M] denote the semantics (i.e., traces) of M, represented by the set
of input/output pairs, that is, [M] = {((h,£),0) | h€e H,£ € L,0= M(h,{)}.
Then, formally, k-safety property is defined as follows.

Definition 3.1 (k-safety property). We say that a property P C Prog x RT is
a k-safety property iff (M,q) ¢ P implies that there exists T C [M] such that
IT| < k and VM'.T C [M'] = (M’,q) & P.

Note that the original definition of k-safety property is only defined over
programs [29, 9]. However, because the bounding problems take the additional
input ¢, we extend the notion to account for the extra parameter.

We now state the main results of this section which show that none of the
bounding problems are k-safety problems for any k. Because we are interested in
hardness, we focus on the case where the distribution is the uniform distribution.
That is, the results we prove for the specific case applies to the general case.

Theorem 3.2. Neither Bgg[U), Bug|U|, Bar|U], nor Beoc is a k-safety prop-
erty for any k such that k > 0.

The result follows from the fact that for each of bounding problem By
above, for any k, there exists ¢ such that deciding (M, q) € By is not a k-safety
property. In fact, as we show next, for some of the problems such as Bgg[U],
even if we fix ¢ to an arbitrary constant, there exists no k such that the problem
is k-safety. (But for other problems, for certain cases, we can find k that depends
on q.) We defer the details to the next section. (See also Section 5.2.)

3.1 K-Safety Under a Constant Bound

The result above appears to suggest that the bounding problems are equally
difficult for SE[U], ME|U], GE|U], and CC. However, holding the parameter
g constant (rather than having it as an input) paints a different picture. We
show that the problems become k-safety for different definitions for different k’s
under different conditions in this case.

First, for ¢ fixed, we show that the bounding problem for the channel-
capacity based definition of quantitative information flow is k-safety for & =
|27] + 1. (Also, this bound is tight.)

Theorem 3.3. Let q be a constant. Then, Boc is |27] + 1-safety, but it is not
k-safety for any k < [29].

We briefly explain the intuition behind the above result. Recall that a prob-
lem being k-safety means the existence of a counterexample trace set of size at
most k. That is, for (M, q) ¢ Bce, we have T C [M] such that |T| < [27] +1
such that any program that also contains T as its traces also does not belong
to Bee (with g), that is, its channel-capacity-based quantitative information
flow is greater than g. Then, the above result follows from the fact that the
channel-capacity-based quantitative information flow coincides with the maxi-
mum over the low security inputs of the logarithm of the number of outputs [20],

12

therefore, any T containing |2%| + 1 traces of the same low security input and
disjoint outputs is a counterexample.

For concreteness, we show how to check Bo¢ via self composition. Suppose
we are given a program M and a positive real . We construct the self-composed
program M’ shown below.

]\4/(]{1,}'?[27 e ,Hn,L) =
Oy := M(Hy,L); Oy := M(Hy,L);...;0, := M(H,,L);
assert(\/, jcq1,. oy (O = O Ni# j))

where n = [22] 4+ 1. In general, a self composition involves making k copies the
original program so that the resulting program would generate k traces of the
original (having the desired property). By the result proven by Malacaria and
Chen [20](see also Lemma A.8), it follows that M’ does not cause an assertion
failure iff (M, q) € Bee.

Next, we show that for programs without low security inputs, Byg[U] and
Bgg|U] are also both k-safety problems (but for different k’s) when ¢ is held
constant.

Theorem 3.4. Let q be a constant, and suppose Byg[U] only takes programs
without low security inputs. Then, ByglU] is |29| 4+ 1-safety, but it is not
k-safety for any k < [21].

Theorem 3.5. Let g be a constant, and suppose Bgg|U] only takes programs

without low security inputs. If ¢ > %, then, BgglU] is L(L(L;j{:lij + 1-safety,

but it is not k-safety for any k < L%] Otherwise, ¢ < & and Bgg[U] is
2-safety, but it is not 1-safety.

The result for ME[U] follows from the fact that for programs without low
security inputs, the min-entropy based quantitative information flow with the
uniform distribution is actually equivalent to the channel-capacity based quan-
titative information flow [28]. The result for GE[U] may appear less intuitive,
but, the key observation is that, like the channel-capacity based definition and
the min-entropy based definition with the uniform distribution (for the case
without low security inputs), for any set of traces T' = [[M]], the information
flow of a program containing 1" would be at least as large as that of M. There-
fore, by holding ¢ constant, we can always find a large enough counterexample
T. The reason Bgg|[U] is 2-safety for ¢ < % is because, in the absence of low
security inputs, the minimum non-zero quantity of GE[U](M) is bounded (by
1/2), and so for such ¢, the problem GE[U](M) < q is equivalent to checking
non-interference.'?

But, when low security inputs are allowed, neither Byg[U] nor Bgg[U] are
k-safety for any k, even when ¢ is held constant.

13In fact, the minimum non-zero quantity property also exists for ME[U] without low se-
curity inputs and CC. There, the minimum non-zero quantity is 1, which agrees with the
formulas given in the theorems.

13

Theorem 3.6. Let q be a constant. (And let Byg([U] take programs with low
security inputs.) Then, Byg[U] is not a k-safety property for any k > 0.

Theorem 3.7. Let q be a constant. (And let Bgg|U] take programs with low
security inputs.) Then, Bag|U] is not a k-safety property for any k > 0.

Finally, we show that the Shannon-entropy based definition (with the uni-
form distribution) is the hardest of all the definitions and show that its bounding
problem is not a k-safety property for any k, with or without low-security inputs,
even when ¢ is held constant.

Theorem 3.8. Let q be a constant, and suppose Bgg|U] only takes programs
without low security inputs. Then, Bsg|U] is not a k-safety property for any
k> 0.

Intuitively, Theorems 3.6, 3.7, and 3.8 follow from the fact that, for these
definitions, given any potential counterexample 7' C [M] to show (M, q) ¢ By,
it is possible to find M’ containing T" whose information flow is arbitrarily close
to 0 (and so (M’,q) € Bx). See Section 5.2 for further discussion.

Because k tends to grow large as ¢ grows for all the definitions and it is
impossible to bound k for all ¢, this section’s results are unlikely to lead to
a practical verification of quantitative information flow. '* Nevertheless, the
results reveal interesting disparities among the different proposals for the defi-
nition of quantitative information flow.

3.2 K-Safety for Belief-based Definition

This section investigates the hardness of the bounding problems for the belief-
based definition of quantitative information flow. We define two types of bound-
ing problems.

Bpg; [<,uah7£>] - {(M7 Q) | BEK,U'vhv EH(M) < q}
Bppslu] = {(M,q) |Vh,L.BE[{n, h,)](M) < q}

Bpg; checks the program’s information flow against the given quantity for a
specific input pair h, ¢ whereas Bggs checks that for all inputs.

We show that these problems are not a k-safety problems for any k, at least
when ¢ is not a constant. To put the result in perspective, we compare to the
results of the comparison problem for the belief-based quantitative information
flow problem [33].

(1) Checking BE[(U, h,£)](M1) < BE[{U, h, £)](M2) is not a k-safety problem
for any k.

(2) Checking Vh,¢.BE[(U, h,£)](My) < BE[(U, h,£)](Ms) is not a k-safety
problem for any k.

14But, a recent work [16] shows some promising results.

14

(3) Checking Y, h, €. BE[{u, h, £)](M1) < BE[{u, h, £)](M>) is a 2-safety prob-

lem.

Note that the problem in (3) compares the two programs for all experiments
(i, h, £). This problem also turns out to be equivalent to the comparison prob-
lems with universally quantified distributions for SE, MFE, and GFE discussed
in Section 3. Hence, this section’s non-k-safety results show that the bounding
problems Bpg; and Bpge are harder to verify (at least, via the self-composition
approach) than non-interference and the comparison problems with universally
quantified distributions and experiments.

First, we show that Bgg; [(U, h, ¢)] is not a k-safety property for any k, even
when ¢ is held constant, and even without low security inputs.

Theorem 3.9. Let q be a constant, and suppose Bpgr;[(U,h)] only takes pro-
grams without low security inputs. Then, Bgg; [(U, h)] is not a k-safety property
for any k > 0.

Next, we show that Bggz[U] is also not a k-safety property for any k when
q is a constant and ¢ > 1, even without low security inputs. But, when ¢ is held
constant and q < 1, Bpge[U] is a 2-safety property.

Theorem 3.10. Let q be a constant. If ¢ > 1, then Bpgrz[U] is not a k-safety
property for any k > 0 even when Bpgg[U] only takes programs without low
security inputs. Otherwise, ¢ < 1 and Bgge|U] is a 2-safety property, but it is
not a 1-safety property.

The 2-safety property for the case ¢ < 1 follows because Bgge[U] turns
out to be equivalent to non-interference for such q. The results show that the
bounding problems for the belief-based definition is also quite hard, except for
the case where one checks if the information flow is less than 1 for all inputs,
which degenerates to checking non-interference.

3.3 K-Safety for Channel Capacity Like Definitions

In this section, we study the hardness of the bounding problems that check the
bound for all distributions. We define the following problems.

Bsgoc = {(M,q) | Vu.SE[u](M) < q}

Bugcc = {(M,q) | Vu.ME[u](M) < q}

Bgrcc = {(M,q) | Vu.GE[u](M) < q}
Bpgicclh,l] = {(M,q) | Vu.BE[(, h, O)](M) < q}
Bgpgzcc = {(M,q) [Vu.Yh, L. BE[(u, h,)|(M) < q}

Note that Bsgcc = Beoe because CC(M) = max,, SE[u|(M). For this reason,
we call these bounding problems “channel capacity like.” For instance, Kopf and
Smith [18] call max, ME[u](M) the min-entropy channel capacity. (Note that
(M, q) € Bugcc iff max,, ME[u)(M) < q.) Bercoc follows the same spirit. We
define two types of channel-capacity like problems for the belief-based definition
corresponding to the two types of bounding problems Bgp; and Bpgs.

15

We prove k-safety results for each of these problems. The result below for
Bsgoce follows directly from that of Boe (i.e., Theorem 3.3). But, the other
results proved are new.

Theorem 3.11. Let g be a constant. Then, Bsgcc is |22 + 1-safety, but it is
not k-safety for any k < |27].

First, we show that By/pcc enjoys the same property as Bggco. That is,
when ¢ is held constant, it is |29] + 1-safety, but it is not k-safety for any
k < |2%|. Note that unlike Bpg[U], this holds even for programs with low
security inputs. We show this by proving the following lemma stating that
max, ME[u] is actually equivalent to CC'(M).

Lemma 3.12. max, ME[u|(M) = CC(M)

The lemma extends the result by Braun et al. [5] that shows the equiva-
lence for the low-security-input-free case. By the lemma, the k-safety result for
Buecc follows directly from that of Bee.

Theorem 3.13. Let q be a constant. Then, Bygroco is |29] + 1-safety, but it
is not k-safety for any k < |29].

Next, we prove that, when ¢ is held constant, Bgrcc is k-safety for k =

L%J + 1 when ¢ > 3 and is 2-safety for ¢ < . Recall that these k-

safety bounds are equivalent to those of Bggr|[U] without low security inputs
(cf. Theorem 3.5). However, unlike Bgg[U], the k-safety result here holds even
for programs with low security inputs.

Theorem 3.14. Let q be a constant. If g > %, then, Barcco 18 L(LzL;jUJ:l—)ZJ +1-

safety, but it is not k-safety for any k < L%J. Otherwise, q < 3 and
Bgrcoco is 2-safety, but it is not 1-safety.

The above is shown by proving the following lemma which states that
the “guessing entropy channel capacity” max, GE[u] is actually equivalent to

max; GE[U ® /). (See below for the definition of U & £.)

Lemma 3.15. We have max, GE[u](M) = maxy GE[U @ £/](M) where U @ ('
denotes Ah, L.if £ = ¢ then U(h) else 0.

Finally, we prove somewhat surprising results for Bgpg;cc[h, f] and Bpgrscc
stating that they are in fact equivalent to non-interference, independent of ¢g. It
follows that these problems are 2-safety but not 1-safety.

Theorem 3.16. (M,q) € Bpgicc|h,) iff M(£) is non-interferent.

Here, M(¢) = Ah.M(h,f). That is, the theorem states that, for any g,
(M, q) € Bggicclh,] iff the program M restricted to the low security input ¢
is non-interferent. (Note that checking non-interference at a fixed low security
input is also a 2-safety property and is not a 1-safety property.)

An analogous result holds for Bggscc.-

16

Theorem 3.17. (M, q) € Bggzcc iff M is non-interferent.

Clarkson et al. [9] also studies Bggacc, which they call QL in their paper.1®
They state that the problem is a hypersafety property, which is a superset of
k-safety properties.'6

4 Complexities for Loop-free Boolean Programs

In this section, we analyze the computational complexity of the bounding prob-
lems when the programs are restricted to loop-free boolean programs. We com-
pare the complexity theoretic hardness of the bounding problems with those of
the related problems for the same class of programs, as we have done with the
k-safety property of the problems.

That is, we compare against the comparison problems of quantitative infor-
mation flow and the problem of checking non-interference for loop-free boolean
programs. The complexity results for these problems are summarized below.
Here, X is SE[U], ME[U], GE[U], or CC, and Y is SE, ME, or GE.

(1) Checking non-interference is coNP-complete
(2) Checking X (M) < X(Ms) is PP-hard.
(3) Checking Vu.Y[p](M1) < Y[u)(Msz) is coNP-complete.

The results (1) and (3) are proven in our recent paper [32]. The result (2) is
proven in the extended version of the paper [33] and tightens our (oracle relative)
#P-hardness result from the conference version [32], which states that for each
C such that C is the comparison problem for SE[U], ME[U], GE[U], or CC, we
have #P C FPC. (Recall that the notation FP# means the complexity class of
function problems solvable in polynomial time with an oracle for the problem
A.) #P is the class of counting problems associated with NP. PP is the class
of decision problems solvable in probabilistic polynomial time. PP is known to
contain both coNP and NP, PH C PPP = P#P [30], and PP is believed to be
strictly larger than both coNP and NP. (In particular, PP = coNP would imply
the collapse of the polynomial hierarchy (PH) to level 1.)

We show that, restricted to loop-free boolean programs, the bounding prob-
lems for the Shannon-entropy-based, the min-entropy-based, and the guessing-
entropy-based definition of quantitative information flow with the uniform dis-
tribution (i.e., SE[U], ME[U], and GE[U]) and the channel-capacity based def-
inition (i.e., CC) are all PP-hard. (The results for the belief-based definition
and the channel-capacity-like definitions appear in Section 4.1.) The results
strengthen the hypothesis that the bounding problems for these definitions are
quite hard. Indeed, they show that they are complexity theoretically harder

15Technically, they allow an experiment to consist of a sequence of runs of the program
whereas we restrict an experiment to a single run.

16Informally, a property is a hypersafety if there exists a counterexample set of traces of
any size.

17

than non-interference and the comparison problems with the universally quan-
tified distributions for loop-free boolean programs, assuming that coNP and PP
are separate.

We define the syntax of loop-free boolean programs in Figure 1. We assume
the usual derived formulas ¢ = 1, ¢ = 1, ¢ V 9, and false. We give the usual
weakest precondition semantics in Figure 2.

To adapt the information flow framework to boolean programs, we make
each information flow variable H, L, and O range over functions mapping
boolean variables of its kind to boolean values. For example, if x and y are
low security boolean variables and z is a high security boolean variable, then
L ranges over the functions {z,y} — {false,true}, and H and O range over
{2} — {false, true}.!” (Every boolean variable is either a low security boolean
variable or a high security boolean variable.) We write M (h, £) = o for an input
(h,¢) and an output o if (h,¢) = wp(M, ¢) for a boolean formula ¢ such that
o= ¢ and o' [~ ¢ for all output o' # o. Here, | is the usual logical satisfaction
relation, using h, ¢, o, etc. to look up the values of the boolean variables. (Note
that this incurs two levels of lookup.)

As an example, consider the following program.

M = z = z;w = y;ife Aythenz := —zelsew = —~w
Let =, y be high security variables and z,w be low security variables. Then,

SE[U)(M) = 15 GE[U](M)
ME[U)(M) = log3~ 1.5849625 CC(M)

1.25
log 3 ~ 1.5849625

We now state the main results of the section, which show that the bounding
problems for SE[U], ME[U], GE[U], and CC are PP-hard.

Theorem 4.1. PP C Bgg[U]
Theorem 4.2. PP C Byg|[U]
Theorem 4.3. PP C Bgg|U]
Theorem 4.4. PP C Bge

We remind that the above results hold (even) when the bounding prob-
lems Bgg|U|, Bur|U], Bgr[U], and Bgce are restricted to loop-free boolean
programs. We also note that the results hold even when the programs are re-
stricted to those without low security inputs. These results are proven by a
reduction from MAJSAT, which is a PP-complete problem. MAJSAT is the
problem of deciding, given a boolean formula ¢ over variables ?, if there are
more than 21711 satisfying assignments to ¢ (i.e., whether the majority of the
assignments to ¢ are satisfying).

17"We do not distinguish input boolean variables from output boolean variables. But, a
boolean variable can be made output-only by assigning a constant to the variable at the start
of the program and made input-only by assigning a constant at the end.

18

4.1 Complexities for Belief and Channel Capacity Like
Definitions

This section investigates the complexity theoretic hardness of the bounding
problems for the belief-based definition and the channel-capacity-like definition
of quantitative information flow introduced in Section 3.2 and Section 3.3. As
in Section 4, we focus on loop-free boolean programs.

Below shows the complexity results for the belief-based comparison problems
for loop-free boolean programs [33].

(1) Checking BE[(U,h,£)|(My1) < BE[(U, h, £)](M>z) is PP-hard.
(2) Checking Y, £.BE[(U, h,)|(M,) < BE[{U, h, £)](Ms,) is PP-hard.
(3) Checking Y, h, £.BE[{i1, h,)] (M) < BE[{1s, h, £)](M3) is coNP-complete.

First, we prove that the two types of bounding problems for the belief-based
definition, Bgg; and Bggs, are both PP-hard.

Theorem 4.5. PPQ BBEJ [<U, h, 6”
Theorem 4.6. PPQ BBEQ [U]

As in Section 4, the above theorems are proven by a reduction from MA-
JSAT. They show that the bounding problems for BE[U] are complexity theo-
retically difficult.

Next, we prove the hardness results for the channel-capacity like definitions
of quantitative information flow. Theorems 4.7 and 4.8 for Bsgcc and Bygpcoc
follow from the equivalence max, SE[u](M) = max, ME[u](M) = CC(M)
(cf. Section 3.3) and Theorem 4.4. Theorem 4.9 for Bgrcoce follows from
Theorem 4.3 and the equivalence max,, GE[u](M) = max, GE[U @ £](M) (cf.
Lemma 3.15).

Theorem 4.7. PP C Bsgcc
Theorem 4.8. PP C Byrcc
Theorem 4.9. PP C Bgrcco

Finally, the following coNP-completeness results for Bggicc[h,?] and
Bpgg2cc follow from their equivalent to non-interference and the fact that check-
ing non-interference is coNP-complete for loop-free boolean programs (cf. Sec-
tion 4).

Theorem 4.10. Bgpgicclh,] is coNP-complete.

Theorem 4.11. Bggscc is coNP-complete.

19

5 Discussion

5.1 Bounding the Domains

The notion of k-safety property, like the notion of safety property from where
it extends, is defined over all programs regardless of their size. (For example,
non-interference is a 2-safety property for all programs and unreachability is a
safety property for all programs.) But, it is easy to show that the bounding
problems would become “k-safety” properties if we constrained and bounded
the input domains because then the size of the semantics (i.e., the input/output
pairs) of such programs would be bounded by |H|x|L|. In this case, the problems
are at most |H|x|L|-safety. (And the complexity theoretic hardness degenerates
to a constant.) But, like the k-safety bounds obtained by fixing ¢ constant
(cf. Section 3.1), these bounds are high for all but very small domains and are
unlikely to lead to a practical verification method. Also, because a bound on
the high security input domain puts a bound on the maximum information flow,
the bounding problems become a tautology for ¢ > ¢, where ¢ is the maximum
information flow for the respective definition.

5.2 Low Security Inputs

Recall the results from Section 3.1 that, under a constant bound, the bounding
problems for both the min-entropy based definition and the guessing-entropy
based definition with the uniform distribution are k-safety for programs without
low security inputs, but not for those with. The reason for the non-k-safety
results is that the definitions of quantitative information flow ME and GE
(and in fact, also SE) use the conditional entropy over the low security input
distribution and are parameterized by the distribution. This means that the
quantitative information flow of a program is averaged over the low security
inputs according to the distribution. Therefore, by arbitrarily increasing the
number of low security inputs, given any set of traces T, it becomes possible to
find a program containing 7" whose information flow is arbitrarily close to 0 (at
least under the uniform distribution). This appears to be a property intrinsic to
any definition of quantitative information flow defined via conditional entropy
over the low security inputs and is parameterized by the distribution of low
security inputs. Note that the channel-capacity-like definitions do not share this
property as it is defined to be the maximum over the distributions. The non-k-
safety result for Bgg[U] holds even in the absence of low security inputs because
the Shannon entropy of a program is the average of the surprisal [8] of the
individual observations, and so by increasing the number of high security inputs,
given any set of traces T, it becomes possible to find a program containing T'
whose information flow is arbitrarily close to 0. The non-k-safety results for
Bpg:[(U,h)] and Bpge[U] hold for similar reasons.'8

18They are, respectively, the surprisal of a particular input, and the maximum surprisal
over all the inputs.

20

6 Related Work

This work continues our recent research [32] on investigating the hardness and
possibilities of verifying quantitative information flow according to the formal
definitions proposed in literature [8, 12, 7, 19, 28, 17, 1, 22, 20, 26, 5, 18].
Much of the previous research has focused on information theoretic properties
of the definitions and proposed approximate (i.e., incomplete and/or unsound)
methods for checking and inferring quantitative information flow according to
such definitions. In contrast, this paper (along with our recent paper [32])
investigates the hardness and possibilities of precisely checking and inferring
quantitative information flow according to the definitions.

This paper has shown that the bounding problem, that is, the problem of
checking X (M) < ¢ given a program M and a positive real ¢, is quite hard
(for various quantitative information flow definitions X’). This is in contrast
to our previous paper that has investigated the hardness and possibilities of
the comparison problem, that is, the problem of checking X (M;) < X(Ma)
given programs M; and Ms. To the best of our knowledge, this paper is the
first to investigate the hardness of the bounding problems. But, the hard-
ness of quantitative information flow inference, a harder problem, follows from
the results of our previous paper, and Backes et al. [1] and also Heusser and
Malacaria [15] have proposed a precise inference method that utilizes self com-
position and counting algorithms. Also, independently from our work, Heusser
and Malacaria [16] have recently applied the self-composition method outlined
in Section 3.1 for checking the channel-capacity-based quantitative information
flow.

7 Conclusion

In this paper, we have formalized and proved the hardness of the bounding prob-
lem of quantitative information flow, which is a form of (precise) checking prob-
lem of quantitative information flow. We have shown that no bounding problem
is a k-safety property for any k, and therefore that it is not possible to reduce the
problem to a safety problem via self composition, at least when the quantity to
check against is unrestricted. The result is in contrast to non-interference and
the quantitative information flow comparison problem with universally quan-
tified distribution, which are 2-safety properties. We have also shown a com-
plexity theoretic gap with these problems, which are coNP-complete, by proving
the PP-hardness of the bounding problems, when restricted to loop-free boolean
programs.

We have also shown that the bounding problems for some quantitative infor-
mation flow definitions become k-safety for different £’s under certain conditions
when the quantity to check against is restricted to be a constant, highlighting in-
teresting disparities among the different definitions of quantitative information
flow.

It is interesting to note that, as with the comparison problems, the bounding

21

problems become comparatively easier when the input distribution becomes uni-
versally quantified. That is, as our previous work [32] has shown that checking if
V. Y[p](My) < Y]u](Ms) is often easier than checking if Y[U](M7) < Y[U](Mz)
(for various quantitative information flow definitions)), we have shown that
the problem of checking Vu.Y[u](M) < g is often easier than the problem of
checking Y[U]|(M) < q.

Acknowledgments

This work was supported by MEXT KAKENHI 23700026, 22300005, and the
Global COE Program “CERIES.”

References

[1] M. Backes, B. Kopf, and A. Rybalchenko. Automatic discovery and quan-
tification of information leaks. In 30th IEEE Symposium on Security and
Privacy, SE&P 2009, pages 141-153. IEEE Computer Society, May 2009.

[2] T.Ball and S. K. Rajamani. The SLAM project: debugging system software
via static analysis. In Proceedings of the 29th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL 2002, pages
1-3. ACM, January 2002.

[3] G. Barthe, P. R. D’Argenio, and T. Rezk. Secure information flow by
self-composition. In 17th IEEE Computer Security Foundations Workshop,
CSFW 2004, pages 100-114. IEEE Computer Society, June 2004.

[4] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software
model checker Blast. International Journal on Software Tools for Technol-
ogy Transfer, STTT, 9(5-6):505-525, 2007.

[5] C. Braun, K. Chatzikokolakis, and C. Palamidessi. Quantitative notions of
leakage for one-try attacks. FElectron. Notes Theor. Comput. Sci., 249:75—
91, August 2009.

[6] D. Clark, S. Hunt, and P. Malacaria. Quantified interference for a while
language. Flectr. Notes Theor. Comput. Sci., 112:149-166, January 2005.

[7] D. Clark, S. Hunt, and P. Malacaria. A static analysis for quantifying
information flow in a simple imperative language. Journal of Computer
Security, 15(3):321-371, August 2007.

[8] M. R. Clarkson, A. C. Myers, and F. B. Schneider. Belief in information
flow. In 18th IEEE Computer Security Foundations Workshop, CSFW
2005, pages 31-45. IEEE Computer Society, June 2005.

22

[9]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

M. R. Clarkson and F. B. Schneider. Hyperproperties. In Proceedings of the
21st IEEE Computer Security Foundations Symposium, CSF 2008, pages
51-65. IEEE Computer Society, June 2008.

E. S. Cohen. Information transmission in computational systems. In Pro-
ceedings of the Sizth Symposium on Operating System Principles, SOSP
1977, pages 133-139. ACM, November 1977.

A. Darvas, R. Héhnle, and D. Sands. A theorem proving approach to
analysis of secure information flow. In Security in Pervasive Computing,
Second International Conference, SPC 2005, volume 3450 of Lecture Notes
in Computer Science, pages 193-209. Springer, April 2005.

D. E. R. Denning. Cryptography and data security. Addison-Wesley Long-
man Publishing Co., Inc., 1982.

J. A. Goguen and J. Meseguer. Security policies and security models. In
Proceedings of the IEEE Symposium on Security and Privacy, S&P 1982,
pages 11-20. IEEE Computer Society, April 1982.

T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction.
In Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, POPL 2002, pages 58-70. ACM, January
2002.

J. Heusser and P. Malacaria. Applied quantitative information flow and
statistical databases. In Formal Aspects in Security and Trust, 6th In-
ternational Workshop, FAST 2009, Revised Selected Papers, volume 5983
of Lecture Notes in Computer Science, pages 96-110. Springer, November
2009.

J. Heusser and P. Malacaria. Quantifying information leaks in software. In
Twenty-Sixth Annual Computer Security Applications Conference, ACSAC
2010, pages 261-269. ACM, December 2010.

B. Képf and D. Basin. An information-theoretic model for adaptive side-
channel attacks. In Proceedings of the 14th ACM conference on Computer
and communications security, CCS 2007, pages 286-296. ACM, October
2007.

B. Kopf and G. Smith. Vulnerability bounds and leakage resilience of
blinded cryptography under timing attacks. In Proceedings of the 23rd
IEEE Computer Security Foundations Symposium, CSF 2010, pages 44—
56. IEEE Computer Society, July 2010.

P. Malacaria. Assessing security threats of looping constructs. In Pro-
ceedings of the 84th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2007, pages 225-235. ACM, January
2007.

23

[20]

[26]

[30]

[31]

P. Malacaria and H. Chen. Lagrange multipliers and maximum information
leakage in different observational models. In Proceedings of the third ACM
SIGPLAN workshop on Programming languages and analysis for security,
PLAS 2008, pages 135-146. ACM, June 2008.

J. L. Massey. Guessing and entropy. In In Proceedings of the 1994 IEEFE
International Symposium on Information Theory, page 204, 1994.

S. McCamant and M. D. Ernst. Quantitative information flow as net-
work flow capacity. In Proceedings of the ACM SIGPLAN 2008 Conference
on Programming Language Design and Implementation, PLDI 2008, pages
193-205. ACM, June 2008.

J. McLean. A general theory of composition for trace sets closed under
selective interleaving functions. In IEEE Symposium on Security and Pri-
vacy, SEP 1994, pages 79-93. IEEE Computer Society, May 1994.

K. L. McMillan. Lazy abstraction with interpolants. In Computer Aided
Verification, 18th International Conference, CAV 2006, volume 4144 of
Lecture Notes in Computer Science, pages 123—-136. Springer, August 2006.

D. A. Naumann. From coupling relations to mated invariants for check-
ing information flow. In Proceedings of the 11th Furopean Symposium on
Research in Computer Security, ESORICS 2006, volume 4189 of Lecture
Notes in Computer Science, pages 279-296. Springer, September 2006.

J. Newsome, S. McCamant, and D. Song. Measuring channel capacity to
distinguish undue influence. In Proceedings of the ACM SIGPLAN Fourth
Workshop on Programming Languages and Analysis for Security, PLAS
2009, pages 73-85. ACM, June 2009.

C. Shannon. A mathematical theory of communication. Bell System Tech-
nical Journal, 27:379-423, 623656, 1948.

G. Smith. On the foundations of quantitative information flow. In Proceed-
ings of the 12th International Conference on Foundations of Software Sci-
ence and Computational Structures, FOSSACS 2009, volume 5504, pages
288-302. Springer-Verlag, March 2009.

T. Terauchi and A. Aiken. Secure information flow as a safety problem. In
Proceedings of the 12th International Symposium on Static Analysis, SAS
2005, volume 3672 of Lecture Notes in Computer Science, pages 352-367.
Springer, September 2005.

S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput.,
20(5):865-877, 1991.

H. Unno, N. Kobayashi, and A. Yonezawa. Combining type-based analysis
and model checking for finding counterexamples against non-interference.
In Proceedings of the 2006 Workshop on Programming Languages and Anal-
ysis for Security, PLAS 2006, pages 17-26. ACM, June 2006.

24

[32] H. Yasuoka and T. Terauchi. Quantitative information flow - verification
hardness and possibilities. In Proceedings of the 23rd IEEE Computer Se-
curity Foundations Symposium, CSF 2010, pages 15-27. IEEE Computer
Society, July 2010.

[33] H. Yasuoka and T. Terauchi. Quantitative information flow - verification
hardness and possibilities (extended version). 2010. In submission.

A Proofs

We define some abbreviations.
Definition A.1. p(z) 2 pu(X =)

We use the above notation whenever the correspondences between random
variables and their values are clear.
We define some useful abbreviations for programs having low security inputs.

Definition A.2. M[H,{] = {o|3h € H.o= M (h,{)}
Definition A.3. M(¢) = Ah.M(h, ()

Note that M (¢) is the program M restricted to the low security input ¢, and
that M[H, /] is the set of outputs of M ().

We elide the parameter ¢ from the input to the bounding problems when it
is clear from the context (e.g., when ¢ is held constant). For example, we write
Bsg|U](M) and M € Bgg[U] instead of Bsg[U](M,q) or (M,q) € Bsg[U].

We note the following properties of deterministic programs [6].

Lemma A.4. Let M be a program without low-security inputs, M’ be a program
with low-security inputs. Then, we have SE[u](M) = Z|u](O; H) = H[u](O) and
SE[p](M') = Z[u)(O; H|L) = H[u](O|L)

Definition A.5.
In(p, X, z) = {z' € X [p(z') > p(x)}]
Intuitively, In(u, X, z) is the order of x defined in terms of p.

Lemma A.6.
Glul(X) = 21§i§|x\iﬂ(3«"i) = YpexIn(u, X, z)u(r)
Proof. Trivial. O

Lemma 2.11. Let p be a belief, he be a high-security input, £¢ be a low-security
input. Then, BE[(u, he,Le)|(M) = —log Spe (| M 06)=M(he)} W(R).

25

Proof. By definition, we have
BEK:uth?Zf”(M) .
= D(u — he) — D(plog — he) ,
=3, he(h)log 2eth) — 57, hg(gh)) log h=)
_ 1 u(he
- log u(he) + 10g Zh,e{h,’

IM(h! eg)=M(hg Lg)} u(h)

= —log Zhe{h’\M(h’,fs):M(hs,fs)} p(h)
O

Theorem 2.14. Let pu be a distribution such that Vh € H, ¢ € L.u(h,£) > 0.
Then,

e M is non-interferent if and only if SE[u](M) < 0.

e M is non-interferent if and only if ME[u](M) < 0.

o M is non-interferent if and only if GE[u](M) < 0.

e M is non-interferent if and only if BE[(u', h, £)](M) < 0.1
e M is non-interferent if and only if CC(M) < 0.

Proof. Let O ={M(h,¢) |he HAL e L}.

o SE
(See [6].)
o MFE
- =
Suppose M is non-interferent. By the definition, it suffices to show
that
VIpJ(H|L) = V[u)(H|L,O)
That is,

> w0y max p(hle) =y | (¢, 0) max u(hl¢. 0)

4 2,0

We have for any ¢, and o, such that u(¢;,0,) > 0, u(ly, 0,) = u(ls),
and for all hy, £, and o, such that pu(h,,£,,0,) > 0, for any h; and
o' € 0\ {oy}, pu(hy, Ly, 0,) = 0. Therefore, we have

S0 il 0) maxy p(h|l,0) = 3, u(l,0) max, AL

= 3, u(f) maxy, u(hlé)

19Recall Definition 2.10 that p’ is a distribution over H such that p'(h) > 0 for all h € H.

26

- <

o GF

We prove the contraposition. Suppose M is interferent. That is,
there exist hq, ho, and £ such that M (hq,¢) # M(hg,). Let 01 =
M(hq,¢') and 09 = M (hg,£"). We have

Zu max,u (h|0) = A—i—m}?xu(h,ﬁ')

where A =3,y (o maxp p(h,). And,
— /!
KZO:M(Z, 0) max w(hlé,0) = B+ zg: max w(h, ' o)

where B = 3)@ () xo maxn pi(h, £, 0). Trivially, we have A <
B and
/ /
m}?xu(h,ﬁ) < 50 m}:?xu(h,ﬁ ,0)

Therefore, we have ME[u](M) > 0.

- =

Suppose M is non-interferent. By the definition,

GE[u](M)
=Y, S In(R (', 0), H, h)pa(h,)
- Zf,o Zh In()‘h/ (h/ ¢ 0)7 H,)M(hv E’ O)
= Y 3 IR (B), H, h)pa(h,)
- ZZ Zh I?’L()\h/.,u(h/) H7 h):u(hv 6)

=0

since for all h, £, and o, such that p(hs, €, 0,) > 0, for any hl, and
o' € O\ {og}, p(hl, s, 0,) =0.
=

We prove the contraposition. Suppose M is interferent. That is,
there exist hy, ho, and ¢ such that M(hy,¢') # M(hg,). Let 01 =
M(hq,£') and 0o = M (hs,¢). By the definition,
GE[u](M)
=2 2o In(AR (', €), H, h)p (0)
=200 2on INAR (R £, 0), H, h)p(h, £, 0)
= A S IR (I,), B,)b,)
—B 3,3 In(A (W, €, 0) HL) u(h, €, 0)

where

A=Y ser gy S InOW a0), EL, B)pa(h,)
=Y ooy xo Son IR (W, 0), H, h)u(h, €', 0)

27

e BE

o CC

Trivially, we have A > B and

Son In(AR (B, 0), H, h)p(h, £')
>3 3 In(AY (B0 0), H, h)u(h, £, 0)

Therefore, we have GE[u](M) > 0.

=
Suppose M is non-interferent. By Lemma 2.11, for any u, h, and £,

BE([(p, h, O))(M) = —1og Zpre rr | (hr,)=m(nopy (R') = 0

=

We prove the contraposition. Suppose M is interferent. That is,
there exist hy, hg, and ¢ such that M (hy,£¢') # M (h,¢'). Let p’ be
a distribution such that for any &', ¢/ (h’) > 0. Then, by Lemma 2.11,
we have for any h,

BE[</J/, h,glﬂ(M) = —IOg Eh’e{h”|M(h”,€’):M(h,€/)}/’L/(hl) >0

=
Suppose M is non-interferent. By Lemma A.4, for any p,

SE[p)(M) H[p](O|L)

OZO ZZ M(Oa E) log IL’Z,(JQ)

since p(o,) = p(€). Therefore, we have Yu.SE[u](M) = 0. It follows
that CC(M) = 0.
=

We prove the contraposition. Suppose M is interferent. That is,
there exist hy, ho, and ¢ such that M(hy,¢') # M(ha,). Let 01 =
M(hq,2'), and 0o = M (ha,£'). Then, there exist ' such that

SEW/\(M) = ML) w
> (01,) log gy + i (02,) log i
> 0

And, we have SE[i/|(M) < CC(M).
O

We note the following equivalence of C'C' and ME[U] for programs without
low security inputs [28].

28

Lemma A.7. Let M be a program without low security input. Then, CC(M) =

Theorem 3.2. Neither Bsg[U|, Bug|U], Bae|U], nor Bee is a k-safety prop-
erty for any k such that k > 0.

Proof.

e Bgg[U] is not a k-safety problem for any k such that & > 0.
Trivial by Theorem 3.8.

e Byg[U] is not a k-safety property for any k such that k& > 0.
Trivial by Theorem 3.4.

e Bgr(U] is not a k-safety property for any k such that k& > 0.
Trivial by Theorem 3.5.

e Bge is not a k-safety property for any k such that & > 0.

Trivial from Lemma A.7 and the fact that Byg[U] is not a k-safety prop-
erty for any k.

O

Malacaria and Chen [20] have proved the following result relating the channel-
capacity based quantitative information flow with the number of outputs.

Lemma A.8. Let M be a program (with low security input). Then,
CC(M) = maxyer, log | M[H, £]|

Theorem 3.3. Let q be a constant. Then, Boc is |29] + 1-safety, but it is not
k-safety for any k < [29].

Proof. We prove that Beog is [27] 4+ 1-safety. Let M be a program such that
M ¢ Boco. By Lemma A.8, it must be the case that there exists £ such that
|M[H, ¢]| > |2%] + 1. Then, there exists T C [M] such that |T| < [29] + 1,
ran(T) > [29] + 1, and for all ((h,¢'),0) € T, ¢’ = {. Then, by Lemma A.8, it
follows that for any program M’ such that T C [M'], M’ ¢ Bcc. Therefore,
Bee is a |27] + 1-safety property.

Finally, we prove that Boe[U] is not k-safety for any k < [29]. Let k < [29].
For a contradiction, suppose B¢ is a k-safety property. Let M be a program
such that M € Boc. Then, there exists T such that |T| < k and T C [M]], and
for any M’ such that T C [M']}, (M',q) & Boc. Let T = {(h1,01), ..., (hi,0:)}.
Let M be a program such that [M] = T. More formally, let M be the following
program.

M(hy) = 01, M(ha) = 02,..., M(h;) = o;

Then, we have

CC(M) =log|{o1,02,...,0;} <logk <g¢q

29

It follows that (M,q) € CC, but T C [M]. Therefore, this leads to a contra-
diction. O

Theorem 3.4. Let g be a constant, and suppose By (U] only takes programs
without low security inputs. Then, Byg[U] is [22] + 1-safety, but it is not
k-safety for any k < [29].

Proof. Straightforward by Theorem 3.3 and Lemma A.7. O

Lemma A.9. Let M be a program without low security inputs. Then, we have
GE[U|(M) = % — ;-3 |Ho|? where n is the number of inputs, and H, =
{hlo=M(n)}.

Proof. By the definition, we have

GE[U|(M) = GUJ(H)—G[U](H|O)
= S, In(U,H, h)U(h)
—>,U(0) >, In(AW .U (R'|0),H,, h)U(h|o)
= Fan(n+1) = %, el d g [Ho | (Ho| + 1)
= 5= o 2, [Ho?

O

Lemma A.10. Let M and M’ be low-security input free programs such that
[M'] = [M]U{(h,0)} and h & dom([M]). Then, we have GE[U|(M) <
GEU|(M").

Proof. We prove GE[U|(M') — GE[U](M) > 0. Let n = |[M])|, O = ran([M]),
H = dom(M), and H, = {h € H | 0o = M(h)}.
By Lemma A.9, we have

GE[U}(M/)—lGE[U]gM) ,) ,
=" — sy (B + (IHo| + 1)?) = § + 55(B + [H,[?)
= 30 (= [Ho|)? + B) > 0

where B =3, co\ {0} |Hy|? and H, = {h | o’ = M(h)}. O

Lemma A.11. Let q > % Let M be a program without low security inputs
such that GE[U|(M) > q and VM'.[M'] € [M] = GE[U|(M') < q. Then, it

must be the case that |[M]| < L(ﬁfll_)zj +1.

Proof. Let n be the integer such that n = |[M])|. If M returns only one output,
we have GE[U](M) = 0. Therefore, M must have more than 1 output as
GE[U)(M) > q. By Lemma A.9, we have for any o’

GEUION. = = (B =)
= i—L(B+i

where i = 3 g\ 1oy [Ho| and B = - o\ (o) |H,|?. Because GE[U](M) > gq,
we have ¢ > q. Then, we have

GEU)(M) >q iff i—Bt g
; B+i?
iff n> 2(i—tq)

By the definition of M, we have VM'.[M'] C [M] = GE[U](M') < q. Let
[M] = [M]\ {(R,0')} where M(h') = o'. Then, we have

GE[U|(M)<q iff i— Bt <gq

2(n—1) =
iff 0 < giE +1
Hence, we have
B +4* < B+ i2 1

- <N -
2(i —q) 2(i — q)
Because B =}~ co\ (o} |H,|? and i = >oco\{o'} IHol, the largest n occurs when
B = 2. That is, when M has exactly two outputs. Therefore, it suffices to prove
the lemma for just such M’s.
1)2 .
Now, we prove |[M]| < L(L,Lﬁjfquj + 1. Recall that i = 37 g\ (o [Ho|- Let
j =n—1. We have

GEU|(M) = i—5(i®+4?)
> q

This means that j > ¢. Recall that [M] = [M] \ {(#',0")} where M(h') = o'.

Then, we have
P
K3

GEUI(M)<q iff i—-:5<gq

. ;2

ff n< il_—q +1
Because n is an integer, we have n < _%J +1and n < LJJTqu +1. Let f =
% +1= % +1. By elementary real analysis, it can be shown that for integers
i and j such that ¢ > g and j > ¢, f attains its maximum value when i = |q]| +1

or j = |¢q] + 1. Therefore, it follows that |[M])| =n < L%J + 1 O

Lemma A.12. Let ¢ > % Let M be a program without low-security inputs

such that GE[U|(M) > q. Then, there exists T such that
o TC[M]

2
o ITI < [fersg) +1

e GEU|(M') > q where [M'] =T.

31

Proof. Let ¢ > 1. Let M be a program such that GE[U](M) > ¢q. By

Lemma A.10 and the fact that GE[U](M) is bounded by \[[1\24]“’ there exists
T such that

o TC[M]
e GE|U|(M') > q where [M'] =T
o VI' CT.GE[U](M) < q where [M]] =T".

By Lemma A.11, we have |T| < L&TJJ:TJZJ + 1. Therefore, we have the conclu-

sion. O

Theorem 3.5. Let q be a constant, and suppose Bgg|U] only takes programs

without low security inputs. If q > %, then, Bggl|U] is L%J + 1-safety,

but it is not k-safety for any k < L%%l_);j. Otherwise, ¢ < 1 and BgglU] is
2-safety, but it is not 1-safety.

Proof. First, we prove that Bgg[U] for programs without low-security inputs
2

is L%J + 1-safety for ¢ > 1. By the definition of k-safety, for any M such

that M & Bgg[U], there exists T such that

1. T C[M]

2
2. |7 < 3555) +1

3. VM'.T C [M'] = M' ¢ Bag[U]

We show that if M & Bgg[U], then there exists T' such that
o TC[M]

o ITI < 5G] +1

e GE[U|(M') > q where [M'] =T.

Note that GE[U](M’) > q and Lemma A.10 imply the condition 3 above. Sup-
pose that M ¢ Bgg[U]. Then, by Lemma A.12, there exists T C [M] such

that 7] < | L4502 41 and GE[U)(M') > q where [M'] = T.

Next, we prove Bgg|U] for programs without low-security inputs is not k-

safety for any k < L%J. For a contradiction, suppose Bgg[U] is a k-safety

property. Let M be a program such that

M(hl) ZO,M(hQ) = 0,...,M(hi) = 0,
M(hi+1) = OI,M(h,H_Q) = 0/,. - ,M(hn) =0

32

where hi, ha,...h,, and 0,0’ are distinct, n = L(L‘Eﬁfll_)(jj +1,and i = |q] + 1.

Let H, = {h| o= M(h)} and and H,y = {h | o’ = M(h)}. By Lemma A.9, we
have

GE[U](M) = % __?1n(|Ho|2 + |Ho’|2)
= i— %]
oo
Let p=|q] +1. If (Léﬁjﬂljz is an integer, then we have
2

GEWION = »-
- rowt

~)

> q

The last line follows from p2q —|—2pq —q¢® =p%q —|—2q(p —q) > (2)
Otherwise, we have || 4 q — [UatDq o (alth - Apg

laJ+1—q lg]+1—q lg]+1—g¢
GE[U|(M) = p- (fﬁw
> p- f,’i
p—q
= q

Hence, we have GE[U|(M) > q. Therefore, M ¢ Bgg|[U]. Then, there exists
T such that |T| < k, T C [M]), and for any M’ such that T C [M'], M’ ¢
Bgg|U]. Let M be a program such that [M] = 7. Then, by Lemma A.9 and
Lemma A.10, we have

GE[U](M) < ”_1_#(7;2+(n_1_i)2)

2 2(n—1)

=] — 2

2

=T
< 1—372

= 4q
It follows that M € Bgg[U]. Recall that T C [M]. Therefore, this leads to a
contradiction.

Next, we prove that Bgg[U] is 2-safety for any ¢ < % It suffices to show that
GEU)(M) < ¢ iff M is non-interferent, because non-interference is a 2-safety
property and not a 1-safety property [23, 3, 11]. We prove that if GE[U](M) < q
then M is non-interferent. The other direction follows from Theorem 2.14. We
prove the contraposition. Suppose M is interferent. It must be the case that
there exist h and h’ such that M(h) # M(h'). Let o = M(h), and o’ = M(R’).
Let M’ be a program such that [M'] = {(h,0),(R',0')}. Note that we have
[M'] € [M]. By Lemma A.10, we have

GE[U)(M') = 5 < GE[U)(M)

N =

33

It follows that GE[U](M) > q. O

Lemma A.13. Let M be a program that has a low-security input, a high-
security input, and a low-security output. Then, we have

ME[U)(M) = log %'

where Qp, = {(0,€) | 3h.o = M(h,£)}, and IL is sample space of the low-security
mput.

Proof. By the definition of ME, we have

1 1
ME[U)(M) = log VIOTHIL) ~ "8 VUI(H[O.)
where
VIUI(HIL) =
VUN(H|O, L) = (21

It follows that

O

Theorem 3.6. Let g be a constant. (And let Byp|U] take programs with low
security inputs.) Then, Byg[U| is not a k-safety property for any k > 0.

Proof. For a contradiction, suppose By (U] is a k-safety property. Let M be
a program such that M ¢ Byg[U]. Then, there exists T such that |T| < k,
T C [M], and for any M’ such that T C [M'], M’ € ByglU]. Let T =
{((h1,1),01),...,((hi,£;),0:)}. Let M be the following program.

M(h17£1> = OluM(hg7£2) = 02,.. 7M(h17£7,) = 04,

M (hiy1,liv1) = 04, M(hig2,lize) = 04y ..., M (hy, £y) = 0

where n :7|H:HH]]:|, and H, L are the high security inputs and the low security
inputs of M. Then, by Lemma A.13, we have

ME[U)(M) = log 13!
i+|L|
L]

< log

Therefore, for any g > 0, there exists L such that ME[U](M) < g and T C [M]).
Therefore, this leads to a contradiction. O

Lemma A.14. Let M be a program that has a high-security input with sample
space H, a low-security input with sample space L, and a low-security output.
Then, we have

where H, ¢ = {h | 0= M(h,0)}.

34

Proof. By the definition, we have

GE[U(M) = G[U|(H|L) - G[U](H|O,L)
= U0 S, In(\R.U(K|6), H, h)U (h|6)
— 3 U(0,0) X, In(AW U (K [0, £), Hy,e, h)U (hlo, £)
= ‘H:;l - Eo,l \Iﬁﬂﬁi |Hi,e| %|Ho,€|(|HO,€| + 1)

|H 1 2
2 T 2MH[L] Zo,e o, e

O

Theorem 3.7. Let q be a constant. (And let Bgg|U] take programs with low
security inputs.) Then, Bag|U] is not a k-safety property for any k > 0.

Proof. For a contradiction, suppose Bgg|U] is a k-safety property. Let M be
a program such that M ¢ Bgg[U]. Then, there exists T' such that |T'| < k,
T C [M], and for any M’ such that T C [M'], M’ & Bgg[U]. Let T =
{((h1,41),01),---,((hi,£:;),0:)}. Let M be the following program.

]\?(hl,fl) =01, M(hg, 62) = 02y..., M(hz,fz_) = 04,

M (hit1,liv1) = 05, M(hiv2,liva) = 04y ... M (N bnn) = 04
where n = [H| and m = |L|, and H, L are the high security inputs and the low
security inputs of M. Then, by Lemma A.14, we have

GEUNM) = 35— 50 3o Horl
< 22— L (in+4 (m—i)n?)
= ﬁ(—m +in?)
Therefore, for any ¢ > 0, there exists L such that GE[U](M) < g and T C [M]).
Therefore, this leads to a contradiction. O

Theorem 3.8. Let q be a constant and suppose Bgg[U] only takes programs
without low security inputs. Then, Bgg|U] is not a k-safety property for any
k> 0.

Proof. For a contradiction, suppose Bgg|U] is a k-safety property. Let M be
a program such that M ¢ Bgg[U]. Then, there exists T such that |T| < k,
T C [M], and for any M’ such that 7" C [M'], M" ¢ Bsg[U]. Let T =
{(h1,01),...,(hiy0;)}. Let M and M’ be the following programs.

M(hl) = 01,]_4_(]12) :02,...,M(hi) ZOi,M(hi+1) = 0,...,M(hn> =0

M'(hy) = 0}, M'(hg) = 0, ..., M'(h;) = o, M'(hix1) = 0,...,M'(h,) = o

where hy, ha, ..., h, are distinct, and o}, 0b, ..., 0}, and o’ are distinct. Then,
we have _ _
SE[U|(M) < SE[U|(M')
= +logn+ "—log -~

= log "= + Llog(n — i)

Therefore, for any g > 0, there exists M such that SE[U](M) < gand T C [M]).
Therefore, this leads to a contradiction. O

35

Theorem 3.9. Let q be a constant, and suppose Bpg;[(U, h)] only takes pro-
grams without low security inputs. Then, Bpg; [(U, h)] is not a k-safety property
for any k > 0.

Proof. For a contradiction, suppose Bgg;[(U, h)] is a k-safety property. Let M
be a program such that

M(hy) =o,...,M(hy) =o0,M(h) =0

where m = |27, and h,hq,...,h, and o,0" are distinct. Then, we have
BE[(U, h)](M) = log(m+1) > log2? = q. Thatis, (M, q) ¢ Bpg:[(U, h)]. Then,
it must be the case that there is 7' such that |T'| < k, T C [M], and for any M
such that T C [M]), (M,q) € Bgr:[(U,h)]. Let T = {(h},0}),..., (h},ol)}. Let
M Dbe the following program.

/
79

where
e WY, hb, ..., hl are distinct,
e he{hy,....,h},
o {0],0h,...,0}} ={0,0'}, and
e M(h)=0.
Then, we have - .
BE[(U, h)|(M) < —log =7+

It follows that there exists n such that BE[(U,h)](M) < q. This leads to a
contradiction. O

Lemma A.15. Let T be a trace such that T = {((h1,¢),01),...,((hi, '), 0:)}
where 01, . ..,0; are distinct. Let M be the program such that [M]| =T and M’
be a program such that [M'] 2 T. Then, we have maxy ¢ BE[(U, h,£)](M') >
maxy, ¢ BE[(U, h,£)](M).

Proof. By definition, we have

maxp, ¢ BE[(U, h,)](M) log i

ma.Xh’g BE[<U, h, €>](MI) maXh’[— log Ehoe{h’|M’(h/,Z):M’(h,Z)}U(hO)

maxpy — IOg Zho€{h’|M’(h’,Z’):M’(h,Z/)}U(ho)
Jog LU B0-M (W.t)=o}|
min, [{h/|M’(h'£')=0}]|

VI

Therefore, it suffices to show that

{h' | Jo.M' (W, 0') = o}| > imin{h’ | M'(W ,¢') = o}

36

Then,
{h | o.M’ (W, €) = o}| — imin,{h' | M'(R',¢') = o}
> (m —i)min,{h’' | M’ (W, ') = o}
>0

where m = |{o | 3n.M’'(h,l') = o}|. O

Theorem 3.10. Let q be a constant. If ¢ > 1, then Bpgrz[U] is not a k-safety
property for any k > 0 even when Bpge[U| only takes programs without low
security inputs. Otherwise, ¢ < 1 and Bpge|U] is a 2-safety property, but it is
not a 1-safety property.

Proof. First, we show for the case ¢ > 1, Bpgz[U] is not a k-safety property for
any k > 0. For a contradiction, suppose Bpgz[U] is a k-safety property. Let M
be the program such that

M={hy+0,...,hp > 0,h— 0}

where m = |27]. Then, we have BE[(U, h)](M) = log(m-+1) > log 27 = ¢q. That
is, (M, q) & Bggz[U]. Then, it must be the case that there exists T" such that
IT| < k, T C [M], and for any M’ such that T C [M']], (M’,q) ¢ Bpge[U].
Note that for any M’ such that [M'] C [M], Vh.BE[{U,h)](M') < g, and
therefore, it must be the case that such T must be equal to [M].

Let M be the following program.

M(hy) =0, M(hg) =o0,...,M(h,,) = o,
M(h) =0, M(hmi1) =0, M(hmi2) =0,...,M(hap_1) =0
where h, hy, ..., hopy_1 are distinct.
Then, we have |[{h/ | M(h') = o}| = |[{h' | M(R') = 0o'}| = m. Therefore, for
any h/, -
-
BE[(U,hY)(M) = —log o = 1<q
This leads to a contradiction.

Next, we prove that Bggre[U] is a 2-safety property for any g < 1. It suffices
to show that Vh, {.BE[(U, h,£)](M) < q iff M is non-interferent, because non-
interference is a 2-safety property and is not a 1-safety property [23, 3, 11]. We
prove that if Yh,£.BE[(U, h,¢)|(M) < q then M is non-interferent. The other
direction follows from Theorem 2.14. We prove the contraposition. Suppose
M is interferent. It must be the case that there exist hg, hq, and ¢ such that
M(ho,0') # M(hy,0'). Let o = M(ho,?'), and o' = M(hy,¢'). Let M’ be
a program such that [M'] = {((ho,¢),0),((h1,¢),0)}. Note that we have
[M'] C [M]. By Lemma A.15, we have

meax BE[({U,h,)](M") =1 < max BE[(U, h,0)](M)

Tt follows that =(Vh, £.BE[(U, h,£)] < q). O

37

Theorem 3.11. Let q be a constant. Then, Bsgcc is |21 + 1-safety, but it is
not k-safety for any k < |27].

Proof. Trivial from Theorem 3.3 and the fact that Bggce is equivalent to Beoc.
O

Lemma A.16. Let i be a distribution. Then, for any low-security input ¢, we
have my maxy, p(h,) > %" maxy u(h,£,0) where mg = |M[H, /]|

Proof.
my maxp, u(h,£) — -, maxy pu(h, ¢, o)
= > (maxy, pu(h, £) — maxy pu(h, £,0))
>0
since we have Vo. maxy, u(h,) > maxy u(h, ¥, 0). O

Lemma 3.12. max, ME[u|(M) = CC(M)

Proof. The statement was proved for programs without low security inputs by
Braun et al. [5]. We show that the same result holds for programs with low
security inputs.

Let ¢ be a low-security input such that for any ¢, my > my where my, =
|M[H,]| Let 4’ be a distribution such that Vh.p'(h,¢') = 1 where n is the
number of high-security inputs. We have CC(M) = ME[|(M) = logmy.
Therefore, it suffices to show that for any p, ME[W'[(M) > ME[u](M). By
definition,

maxy, 1’ (h,0 0
ME['|(M) = log %
MEi)(M) = log =

¢ 2, maxy p(h,{,0)
> maxy, p(h,f)

Therefore, it suffices to show that

(22, maxp i/ (h, £, 0)) (32, maxp p(h, L))
_(maxh N/(h7 f’))(Ze Zo maxp, /J’(h7 2 0)) >0

By Lemma A.16,

(5, maxn ! (h, £, 0)) (X2, max, p(h, £))
—(maxy, ' (, €))(X, 3, maxy p(h, £,0))
met Sy, p(h, 0) — 2055, 32, maxy u(h, €, 0))

> (3 maxy p(h, €) — 32, 7 maxy p(h, £))
>0
Therefore, we have ME[u'|(M) > ME[u](M). O

Theorem 3.13. Let q be a constant. Then, Bygrcc is |29] + 1-safety, but it
is not k-safety for any k < [29].

Proof. Trivial by Theorem 3.3 and Lemma 3.12. O

38

We define the “normal form” of the guessing-entropy-based quantitative in-
formation flow expression.

Definition A.17 (Guessing entropy QIF Normal Form). Let M be a program
without low-security input. The guessing-entropy based quantitative information
flow GE[p](M) can be written as the linear expression (over p(hy),. .., p(hn))
> aip(h;) where p(hi) > p(he) > -+ > p(hy), and each a; is a non-negative
integer. We call this expression . a;u(h;) the normal form of GE[u|(M).

Lemma A.18. Let M be a program without low-security input. Let). a;pu(h;)
be the normal form of GE[u](M). Then, for any x such that x < |H|, we have

Sai < gl 3G -2 -1

i<z

where j = [{h € (b, hasa} | M(h) = M(hay1)}.

Proof. By the definition of guessing-entropy-based quantitative information flow,
we have

a; =1i—[{h € {hy,...,hi} | M(h) = M(h;)}|

Therefore, we have

Dica @i
=2 icp (i = [{h e {ha, ... hi} | M(h) = M(hi)}])
= Ta(e+1) - 4G - 1j
Zze{z’<m|M(h YoM (i)y LR € {ha, o hit [M(R) = M(hi)}|
Sglz-1Da-3(G-2)0G-1)

where j = [{h € {h1,. .., hay1} | M(R) = M(hey1)}] O

Lemma A.19. Let M be a program without low-security input. Let . a;p(h;)
be the normal form of GE[u|(M). Then, for any x such that x < |H|, we have
Zigx a; < TAzy.

Proof. By Lemma A.18, we have

Zaz_ (-1 f*%(J*Q)(]*l)

i<z

where j = |{h € {h1,...,hoqg1} | M(h) = M(hy41)}|, thatis, j =2 +1—azt1.
Therefore, it suffices to show that i (z — 1)z — 1(j —2)(j — 1) < zay41. Then,
3-2j, 1

2) 4)

=Dt 3G -2 -1 =5+

:z:am_H — 9

By elementary numerical analysis, it can be shown that for integers = and j
such that z +1 > j, $((= + @)2 — 1) attains its minimum value 0 when
x = j — 1. Therefore, we have), a; < Taz41. O

39

Lemma A.20. Let M be a program without low-security input. Let u be a

distribution. Let hy,...,hy, be such that pu(hy) = p(he) = = w(hi—1) >
p(hy) > -+ > p(hy). Let ¢/ be a distribution such that w =
p(hy) = -+ = g (hy), and Ve.x > i = u'(hy) = p(hy). Then, we have

GE[u](M) < GE[u/](M).

Proof. Let > . a;u(h;) be the normal form of GE[u](M). By the construction
of p', 37 a;jp'(hy) is the normal form of GE[u'|(M). Therefore,

GE[W (M) — GE[u](M)
=2 a0 (hy) =22, ajp(hy)
=(ay+ - Jrai)(i*l)#(hzw — (a1 4+ ai—1)pu(hy) — a;p(hi)
— (i — Day — A)(a(ha) — ()
where A = ay + -+ + a;—1. Since we have (¢ — 1)a; — (a1 + -+ a;—1) > 0 by
Lemma A.19, and p(h1) — u(h;) > 0, we have

1

g((i —1a; — A)(u(h1) — p(hs)) >0

Therefore, we have GE[u'|(M) > GE[u](M). O

Lemma 3.15. We have max, GE[u](M) = maxy GE[U @ ')(M) where U @ ¢
denotes Ah, L.if £ = ¢ then U(h) else 0.

Proof.

GE[u](M) = 37, p1(0) > ip(hall) =32, 3", 1(€,0) >, ip(hi| €, 0)
= 2O ip(hill) = 32,37 ip(hi, o] 0))
= >) GENh.pu(h|0)](M(2))

By Lemma A.20, we have max,, GE[u|(M(¢)) = GE[U](M(¢)). Therefore, we
have max,, GE[u](M) = (maxy GE[U @ £'(M)). O

Lemma A.21. Let M and M’ be programs such that [M'] = [MJU{((}',£),0)}
and (B, 0') & dom([M])). Then, we have maxy GE[U ® £](M) < max; GE[U ®
(M.

Proof. By Lemma A.10, for any ¢, we have GE[U ® ¢|(M) < GE[U ® £](M').
Therefore, max, GE[U ® ¢](M) < max, GE[U @ {|(M"). O

(lgJ+1)?
laJ+1—q

|. Otherwise, q¢ <

Theorem 3.14. Let q be a constant. If ¢ > %, then, Baroo s | +1-

(lg]+1)?
la]+1—¢q

]
safety, but it is not k-safety for any k < | i and

Bggecoco is 2-safety, but it is not 1-safety.

Proof. By Lemma 3.15, (M, q) € Bggce iff maxy GE[U ® £/)(M) < ¢.2° We
prove for the case ¢ > % by a “reduction” to the result of Theorem 3.5. The
case for g < % follows by essentially the same argument.

20T herefore, for programs without low security inputs, this theorem follows from Theo-
rem 3.5. But, we show that the theorem holds also for programs with low security inputs.

40

First, we show that Bgrcc is L(ngfll_); + l-safety in this case. By the
definition of k-safety, for any M such that M & Bggcc, there exists T such

that
L T C[M]

2
2. |T) < [{H] +1

3. VM'T C [[M/]] = M’ ¢ Bgecco

Suppose that M € Bggcc. By Lemma 3.15, it must be the case that there exists
¢" such that max, GE[u|(M) = GE[U](M({')). Then, by Lemma A.12, there

exists T C [M(¢)] such that |T| < L%j +1, and GE[U]|(M') > ¢q where
[M'] =T. Let T" = {((h,?¢'),0) | (h,0) € T}. Then, we have GE[U](M") > q
where [M"] = T’. Finally, by Lemma A.21, we have that for any M’ such that

T' C[M'], M' € Bgrcc, and so Bgrcc is L(L(L;(jL—ilsz + 1-safety.

To see that Bgrcc is not k-safety for any k < L(ngfllj(jj, recall Theorem 3.5
that Bgg[U] is not k-safety for such k (even) for low-security-input-free pro-

grams. Therefore, the result follows by Lemma 3.15. O

Theorem 3.16. (M,q) € Bpgicclh,) iff M(£) is non-interferent.

Proof. We prove that if Vu.BE[(u, h, £)](M) < q then M (¢) is non-interferent.
The other direction follows from Theorem 2.14. We prove the contraposition.
Suppose M (¢) is interferent, that is, there exist hg and h; such that M (hg, £) #
M(hy,0). It M(h,£) #= M(hq,£), then let ' be a distribution such that p'(hy) =
1-— ﬁ Otherwise, let ' be a distribution such that p'(hg) = 1 — ﬁ
Then, we have

BE[(u', h, 0))(M) = log(|2?] +1) > ¢

Theorem 3.17. (M, q) € Bggzcc iff M is non-interferent.

Proof. Straightforward from Theorem 3.16 and the fact that a program M is
non-interferent iff for all ¢, M (¢) is non-interferent. O

Notation In the proofs below, for convenience, we sometimes use large letters
H, L, O, etc. to range over boolean variables as well as generic random vari-
ables. Also, we assume that variables H, H', Hy, etc. are high security boolean
variables and L, L', L;, O, Oy, O;, etc. are low security boolean variables.

Majority SAT The following PP-hardness results (Theorems 4.1, 4.2, 4.3,
4.4, 4.5, 4.6, 4.8, and 4.9) are proven by a reduction from MAJSAT, which is a
PP-complete problem. MAJSAT is defined as follows.

MAJSAT = {¢ | #SAT(¢) > 2" '}

41

where n is the number of variables in the boolean formula ¢, and #SAT(¢) is
the number of satisfying assignments of ¢.

Lemma A.22. Let ﬁ and H' be distinct boolean random variables. Let n and
m be any non-negative integers such that n < 211 and m < 2171, Let ¢,,, (resp.

on) be a formula over having m (resp. n) satisfying assignments. Then,
n < m iff SE[U|(M,,) < SE|U](M,). where M, = S(¢n), My, = S(ém), and
S is defined in Figure 3.2!

Proof. First, we explain the construction S(¢) of Figure 3. Here, we use ML-like
case statements (i.e., earlier cases have the precedence). It is easy to see that the

case statements can be written as nested if-then-else statements. Note that 8 =
true, O" = true, and O” = true iff either H' A, or H' A H; and at least one of
H,, ..., H, is false. For other inputs, S(¢) returns disjoint outputs. Therefore,

the number of inputs h such that S(¢)(h) = trué is #SAT () + olH -1 _ 1,

and for the rest of the 2/7 11 f(jSAT(LD) LolHI- 1) inputs, S(¢) returns
disjoint outputs different from true.

Therefore,
z—1_ z4+1 z_ z—1
SEIUI(My) = ZHEm=llog sy + EnE L log 2o+
SEU)(My) = "Zm=tlog = + =2 log2°*+!
where x = |ﬁ|
° =
Suppose n < m < Q‘m. Let_lac = |ﬁ|, and let gland q be positive real
numbers such that p = 222+=1 and ¢ = ™2 =1 We have 0 < p <

q < i. Therefore,
SE[U|(My) — SE[U}(Mm)
= plog% + (1 —p)log2*+t — qlog% — (1 — q)log2t1
> plog(2) + (¢ — p) log 27+!

>0
° =
We prove the contraposition. Suppose m < n < 2|ﬁ‘. Let =z = |ﬁ|,
and let p and ¢ be positive real numbers such that p = % and
q= %:71 We have 0 < ¢ < p < %. Therefore,

SE[U](M,,) — SE[U](M,,)
=log(4)? +logp” + (1 — g) — (1 — p)) log 2"
> log(;)? +logp? + (p — q) log 2°*!
> (p — q)log 2!
>0

21The encoding S is defined so that MAJSAT is reduced to a bounding problem with a
rational upper-bound ¢ in Theorem 4.1 below. A simpler encoding is possible if we were to
do a reduction with a non-rational q.

42

Theorem 4.1. PP C Bgg|U]

Proof. Let ¢ be a boolean formula. Let ¢ be a boolean formula such that
#SAT(p) = 2! + 1 where n is the number of variables in ¢. Let q be the
number such that

¢ = SE[US(¥))

2"~ ty14onTtog gntl 2" (2" +42m 41 1
== +27:‘:»1 log 2n—1+1+2n—1_1 + (2n+)1 log 2n+
_ 1 n+1

where S is defined in Figure 3. Then,

(S(¢).q) € Bsp[U)(S(¢)) it SE[UJ(S(¢)) < SE[UI(S(v))
iff #SAT($) > #SAT (1)
iff ¢ € MAJSAT

by Lemma A.22. Therefore, we can decide if ¢ € MAJSAT by deciding if
SE[U](S(¢)) < q. Note that the boolean program S(¢) and g can be constructed
in time polynomial in the size of ¢. Therefore, this is a reduction from MAJSAT
to Bsg|[U]. O

Lemma A.23. Let ﬁ and H' be distinct boolean variables. Let ¢ be a boolean
formula. Then, we have ME[U|(T(¢)) = log(#SAT(—¢)+1) where T is defined
m Figure 4.

Proof. Tt is easy to see that the number of outputs of T'(¢) is equal to the number
of satisfying assignment to —¢ plus 1. Therefore, it follows from Lemma A.13
that ME[U|(T(¢)) = log(#SAT(—¢) + 1). O

Lemma A.24. Let ﬁ and H' be distinct boolean random varigbles. Let m and
n be any non-negative integers such that m < 2171 and n < 2171, Let ¢, (resp.

on) be a formula over having m (resp. n) satisfying assignments. Then,
n < m iff ME[U|(M,,) < ME[U|(M,,). where My, =T (¢n), My, =T (¢n), and
T is defined in Figure 4.

Proof. By Lemma A.7, Lemma A.8, and Lemma A.23, we have ME[U|(T(¢y,)) <
ME[U(T(6,))) iff log(2'! — m + 1) < log@# —n+ 1) iff n < m. O

Theorem 4.2. PP C Byg|U]

Proof. Let ¢ be a boolean formula. Let ¢ be a boolean formula such that
#SAT () = 21 + 1 where n is the number of variables in ¢. Let ¢ be the
number such that

q= ME[U|(T(¥)) =log(2" — (2" '+ 1)+1)=n—1

43

where T is defined in Figure 4. Then, we have

ME[U|T(¢)) < q iff ME[U|T(¢)) < ME[U|(T(+))
iff ¢ € MAJSAT

by Lemma A.24. Therefore, we can decide if ¢ € MAJSAT by deciding if
ME[U|(T(¢)) < q. Note that T'(¢) and ¢ can be constructed in time polynomial
in the size of ¢. Therefore, this is a reduction from MAJSAT to Byg[U]. O

Definition A.25. Let M be a function such that M : A — B. For any o € B,
we write M—1(0) to mean

M~ (o) ={i € A o= M(i)}

Lemma A.26. Let ﬁ and H' be distinct boolean random wvariables. Let n
and m be non-negative integers such that n < 2111 gnd m < 2H1. Let ¢,,

(resp. &) be a formula over having m (resp. n) satisfying assignments.
Then, m < n iff GE[U|(M,) < GE[U)(M,). where M,, = O := ¢, V H' and
M, =0 :=¢,VH.

Proof. By the definition,

GE[U|(M) = G(H)-G(H|0)
3@ 4+ 5 =3 3 cicym WU (s, 0)
QM| _ W(\M*I(true)ﬁ + |M~1(false)|?)

Therefore, we have
GE[U|(M,) < GE[U](M,)
iff
| Mt (true)|? + | M, (false)|? < |M,, ! (true)|* + | M, ! (false)|?
iff m <n.]

Theorem 4.3. PP C Bgg|U]

Proof. Let ¢ be a boolean formula. Let @ be a boolean formula such that
#SAT () = 21 + 1 where n is the number of variables in ¢. Let ¢ be the
number such that
g = GEO:=%VH)
L — s (M (true)|? + | M (false))
= 9on _ 2n1+2 ((2n—1 + 1)2 + (2n—1 _ 1)2)

where H is a boolean variable that does not appear in ¢ and ¢. Then, we have
GE[U)(O:=¢V H)<q iff GE[U)(O:=¢VH)<GE[U|(O:=¢VH)
it GE[U)(O:=¢VH)<q
i #SAT(¢) > #SAT (1)
iff ¢ € MAJSAT

44

by Lemma A.26. Therefore, we can decide if ¢ € MAJSAT by deciding if
GEU)(O := ¢V H) < q. Note that O := ¢V H and ¢ can be constructed in
time polynomial in the size of ¢. Therefore, this is a reduction from MAJSAT
to Bgg [U} O

Theorem 4.4. PP C Bge
Proof. Straightforward from Lemma A.7 and Theorem 4.2. O

Lemma A.27. Let ﬁ, H', and H" be distinct boolean random variables. Let
n and m be any non-negative integers such that n < 2|ﬁ‘ and m < 2|ﬁ|. Let
Om (resp. ¢n) be a formula over H having m (resp. n) satlisfying assignments.
Then, n < m iff max, BE[(U, h)|(M,,) < max;, BE[{U, h)|(M,), where M, =
V), My =V (¢m), and V is defined in Figure 5. 2

Proof. First, we explain the construction V() of Figure 5. Note that V(¢) =
true iff either H' A H” A, or H' A —~H" A H; and at least one of Hs,..., H,
is false. Therefore, there are strictly more inputs h such that V(¢)(h) = false
than inputs h such that V(¢)(h) = true. Hence, max;, BE[(U,h)|(V(v)) =
BE[(U,1)|(V (¢)) where h’ is any input such that V(¢)(h') = true.

Now, let z = |H|. Then,

maxy, BE[(U,h)](M,) = log 2
maxy BE[(U,)] (M) = log e
Therefore, n < m iff max;, BE[(U, h)](M,,) < maxy, BE[(U, h)](M,,). O

Theorem 4.5. PP C Bpg;[(U, h,{)]

Proof. Let ¢ be a boolean formula. Let ¢ be a boolean formula such that
#SAT () = 271 + 1 where n is the number of variables in ¢. Let ¢ be the
number such that

2n+2

=2
o T Tron 11

¢ = BE[U,W](V(¢)) =1

where V is defined in Figure 5, h is a high security input such that h(H’) =
true, h(H'") = false, h(H;) = true, and h(Hs) = false. Note that V(¢)(h)
V(#)(h) = true. Then, we have

(V(¢),q) € Bpp:[(U, h)] iff max,, BE[(U,/)](V(¢)) <gq
iff maxy, BE[(U,)|(V(¢))
< maxy BE[(U, h)|(V (¥))
iff #SAT(¢p) > #SAT ()
iff ¢ € MAJSAT

22As in Lemma A.22, the encoding is chosen so as to reduce MAJSAT to the bounding
problem with a rational upper-bound.

45

by Lemma A.27, and the fact that maxy BE[(U, h)|(V(¢)) = BE[(U, b)|(V(¢))
and maxy, BE[(U, h)|(V(¢)) = BE[(U, h)](V(¢)). Therefore, we can decide if
¢ € MAJSAT by deciding if BE[(U, h)](V(¢)) < q. Note that V(¢) and ¢ can
be constructed in time polynomial in the size of ¢ (in fact, g is just the constant
2). Therefore, this is a reduction from MAJSAT to Bpg; [(U, h)]. O

Theorem 4.6. PP C Bpgs|U]

Proof. Let ¢ be a boolean formula. Let ¢ be a boolean formula such that
#SAT(p) = 21 + 1 where n is the number of variables in ¢. Let g be the
number such that

2n+2

q= m}?x BE[(U,)](V(¢)) = log on—=1 114 9n-1_1 =2

where V is defined in Figure 5. We have

(V(¢),q) € Bpp2[U] iff max;, BE[(U,h)|(V(¢)) < q
iff maxy, BE[(U, h)](V(¢)) < max;, BE[(U, h)](V (1))
iff #SAT(¢) > #SAT ()
iff ¢ e MAJSAT

by Lemma A.27. Therefore, we can decide if ¢ € MAJSAT by deciding if
maxp, BE[(U, h)](V(¢)) < q. Note that V(¢) and ¢ can be constructed in time
polynomial in the size of ¢ (in fact, ¢ is just the constant 2). Therefore, this is
a reduction from MAJSAT to Bpgz|[U]. O

Theorem 4.7. PP C Bggcc

Proof. Trivial from Theorem 4.4 and the fact that Bggcoe is equivalent to Beoe.

O
Theorem 4.8. PP C Bygrcc
Proof. Straightforward from Lemma 3.12 and Theorem 4.4. O
Theorem 4.9. PP C Bgrcco
Proof. Straightforward from Lemma 3.15 and Theorem 4.3. O

We have shown in a previous work [32] that checking non-interference for
loop-free boolean programs is coNP-complete.

Lemma A.28. Checking non-interference is coNP-complete for loop-free boolean
programs.

Theorem 4.10. Bgpgicclh, {] is coNP-complete.
Proof. Straightforward from Lemma A.28 and Theorem 3.16. O
Theorem 4.11. Bpgococ is coNP-complete.

Proof. Straightforward from Lemma A.28 and Theorem 3.17. O

46

SL’ZZ’(/JlMo;Ml
if ¢ then My else M,
true [z [9AY | —¢

Figure 1: The syntax of loop-free boolean programs

47

wp(z = ¥, 6) = ov/a]
wp(if ¢ then My else My, ¢)

= (¥ = wp(Mo, 9)) A (= = wp(My, ¢))
wp(Mo; My, ¢) = wp(Mo, wp(M, ¢))

Figure 2: The weakest precondition for loop-free boolean programs

48

S(¥)
case (H', 1, ﬁ)

0 = e O = O —
when (true, true, _) then O := true; O’ := true; O” := true
when (true, false, _) then J = ﬁ; O’ = true; 0" = false
when (false, _, tr—ue>) then O = trué; O’ := false; 0" := false

else

if Hy
then 8 = ’ﬁ_ca); O’ :=true; 0" := true
else 8 := H; O :=false; 0" := false

where H', ﬁ =H,,...,H,, and O, 0", O are distinct.

Figure 3: The Boolean Program for Lemma A.22 and Theorem 4.1.

49

T(¢) =
if ¢V H

then Oy := true; 8 = faTe
else Oy := false; 8 = ﬁ

where ﬁ and H' are distinct, and O and 8 are distinct.

Figure 4: The Boolean Program for Lemma A.23, Lemma A.24, and Theo-
rem 4.2

50

V()
case (H’,H’Qﬁ)

when (true, true, _) then

if ¢ then O := true else O := false
when (true,false,trT@ then O := false
when (true, false, _) then

if Hy then O := true else O := false
else O := false

where ﬁ = Hi,..., Hp is the vector of variables appearing in 1, and ﬁ, H',
and H" are distinct.

Figure 5: The Boolean Program for Lemma A.27, Theorem 4.5, and Theo-
rem 4.6.

ol

