On Bounding Problems of Quantitative
Information Flow™

Hirotoshi Yasuoka! and Tachio Terauchi?

! Tohoku University
yasuoka@kb.ecei.tohoku.ac. jp
2 Tohoku University
terauchi@ecei.tohoku.ac. jp

Abstract. Researchers have proposed formal definitions of quantita-
tive information flow based on information theoretic notions such as the
Shannon entropy, the min entropy, the guessing entropy, and channel
capacity. This paper investigates the hardness of precisely checking the
quantitative information flow of a program according to such definitions.
More precisely, we study the “bounding problem” of quantitative infor-
mation flow, defined as follows: Given a program M and a positive real
number ¢, decide if the quantitative information flow of M is less than
or equal to g. We prove that the bounding problem is not a k-safety
property for any k (even when ¢ is fixed, for the Shannon-entropy-based
definition with the uniform distribution), and therefore is not amenable
to the self-composition technique that has been successfully applied to
checking non-interference. We also prove complexity theoretic hardness
results for the case when the program is restricted to loop-free boolean
programs. Specifically, we show that the problem is PP-hard for all the
definitions, showing a gap with non-interference which is coNP-complete
for the same class of programs. The paper also compares the results with
the recently proved results on the comparison problems of quantitative
information flow.

1 Introduction

We consider programs containing high security inputs and low security outputs.
Informally, the quantitative information flow problem concerns the amount of
information that an attacker can learn about the high security input by executing
the program and observing the low security output. The problem is motivated
by applications in information security. We refer to the classic by Denning [11]
for an overview.

In essence, quantitative information flow measures how secure, or insecure,
a program (or a part of a program —e.g., a variable-) is. Thus, unlike non-
interference [9, 12], that only tells whether a program is completely secure or not
completely secure, a definition of quantitative information flow must be able to

* This work was supported by MEXT KAKENHI 20700019, 20240001, and 22300005,
and Global COE Program “CERIES.”

distinguish two programs that are both interferent but have different degrees of
“secureness.”

For example, consider the programs M; = if H = g then O :=0else O :=1
and Ms = O := H. In both programs, H is a high security input and O is a
low security output. Viewing H as a password, M; is a prototypical login pro-
gram that checks if the guess g matches the password.? By executing M, an
attacker only learns whether H is equal to g, whereas she would be able to
learn the entire content of H by executing Ms. Hence, a reasonable definition of
quantitative information flow should assign a higher quantity to Ms than to M,
whereas non-interference would merely say that M; and M are both interferent,
assuming that there are more than one possible value of H.

Researchers have attempted to formalize the definition of quantitative infor-
mation flow by appealing to information theory. This has resulted in definitions
based on the Shannon entropy [11,6, 15], the min entropy [24], the guessing en-
tropy [14,1], and channel capacity [18,16,22]. All of these definitions map a
program (or a part of a program) onto a non-negative real number, that is, they
define a function X such that given a program M, X' (M) is a non-negative real
number. (Concretely, X' is SE[u] for the Shannon-entropy-based definition with
the distribution p, ME[u] for the min-entropy-based definition with the distri-
bution p, GE[u] for the guessing-entropy-based definition with the distribution
i, and CC for the channel-capacity-based definition.) Therefore, a natural ver-
ification problem for quantitative information flow is to decide, given M and a
quantity ¢ > 0, if X (M) < ¢. The problem is well-studied for the case ¢ = 0 as it
is actually equivalent to checking non-interference (cf. Section 2.1). The problem
is open for ¢ > 0 . We call this the bounding problem of quantitative information
flow.

The problem has a practical relevance as a user is often interested in know-
ing if her program leaks information within some allowed bound. That is, the
bounding problem is a form of quantitative information flow checking problem
(as opposed to inference). Much of the previous research has focused on infor-
mation theoretic properties of quantitative information flow and approximate
(i.e., incomplete and/or unsound) algorithms for checking and inferring quanti-
tative information flow. To fill the void, in a recent work [28], we have studied
the hardness and possibilities of deciding the comparison problem of quantitative
information flow, which is the problem of precisely checking if the information
flow of one program is larger than that of the other, that is, the problem of
deciding if X'(M7) < X(My) given programs M; and Ms. The study has lead to
some remarkable results, summarized in Section 3 and Section 4 of this paper
to contrast with the new results on the bounding problem. However, the hard-
ness results on the comparison problem do not imply hardness of the bounding
problem.* Thus, this paper settles the open question.

3 Here, for simplicity, we assume that g is a program constant. See Section 2 for
modeling attacker/user (i.e., low security) inputs.

4 But, they imply the hardness of the inference problem because we can compare
X (M1) and X(M>) once we have computed them.

We summarize the main results of the paper below. Here, X is SE[U], ME[U],
GE[U] or CC, where U is the uniform distribution.

— Checking if X(M) < ¢ is not a k-safety property [25, 8] for any k.
— Restricted to loop-free boolean programs, checking if X' (M) < ¢ is PP-hard.

Roughly, a verification problem being k-safety means that it can be reduced to
a standard safety problem, such as the unreachability problem, via self composi-
tion [3,10]. For instance, non-interference is a 2-safety property (technically, for
the termination-insensitive case®), and this has enabled its precise checking via
a reduction to a safety problem via self composition and applying automated
safety verification techniques [25,21,27]. Also, our recent work [28] has shown
that deciding the comparison problem of quantitative information flow for all
distributions for the entropy-based definitions (i.e., checking if Vu.SE[u](M;) <
SE[u](My), V. ME[u)(My) < ME[u)(Ms), and V. GE[u)(M) < GE[u)(My))
are 2-safety problems (and in fact, all equivalent).

We also prove a complexity theoretic gap with these related problems. We
have shown in the previous paper [28] that, for loop-free boolean programs, both
checking non-interference and the above comparison problem for entropy-based
definitions with universally quantified distributions are coNP-complete. (PP is
believed to be strictly harder than coNP. In particular, coNP = PP implies the
collapse of the polynomial hierarchy to level 1.)

Therefore, the results suggest that the bounding problems of quantitative in-
formation flow are harder than the related problems of checking non-interference
and the quantitative information flow comparison problems with universally
quantified distributions, and may require different techniques to solve (i.e., not
self composition).

The rest of the paper is organized as follows. Section 2 reviews the existing
information-theoretic definitions of quantitative information flow and formally
defines the bounding problems. Section 3 proves that the bounding problems
are not k-safety problems. Section 4 proves that the bounding problems are PP-
hard (even) when restricted to loop-free boolean programs. Section 5 discusses
some implications of the hardness results. Section 6 discusses related work, and
Section 7 concludes. All the proofs appear in Appendix A.

2 Preliminaries

We introduce the information theoretic definitions of quantitative information
flow that have been proposed in literature. First, we review the notion of the
Shannon entropy [23], H[u](X), which is the average of the information content,
and intuitively, denotes the uncertainty of the random variable X.

Definition 1 (Shannon Entropy). Let X be a random variable with sam-
ple space X and p be a probability distribution associated with X (we write u

5 We restrict to terminating programs in this paper. (The termination assumption is
nonrestrictive because we assume safety verification as a blackbox routine.)

explicitly for clarity). The Shannon entropy of X is defined as

1
~ 2 X = e

xeX
(The logarithm is in base 2.)

Next, we define conditional entropy. Informally, the conditional entropy of X
given Y denotes the uncertainty of X after knowing Y.

Definition 2 (Conditional Entropy). Let X andY be random variables with
sample spaces X and Y, respectively, and p be a probability distribution associated
with X and Y. Then, the conditional entropy of X giwvenY, written H[u](X|Y)
1s defined as
pI(XY) =" u(Y = y)Hp(X|Y =y)
yeY
where)
Hp](XY =y) = > pex (X = z[Y =y) log Tx=v=p

_ —_) — u(X=zY=y)
,U(X = $|Y = y) = T av=y)

Next, we define (conditional) mutual information. Intuitively, the conditional

mutual information of X and Y given Z represents the mutual dependence of
X and Y after knowing Z.

Definition 3 (Mutual Information). Let X,Y and Z be random variables
and p be an associated probability distribution. Then, the conditional mutual
information of X and Y given Z is defined as

Z[ul(X;Y]2) = H[u[(X]Z) = H[p](X]Y, 2)
= H[pl(Y]2) = H[u](Y]X, Z)

Let M be a program that takes a high security input H and a low security
input L, and gives the low security output O. For simplicity, we restrict to
programs with just one variable of each kind, but it is trivial to extend the
formalism to multiple variables (e.g., by letting the variables range over tuples).
Also, for the purpose of the paper, unobservable (i.e., high security) outputs are
irrelevant, and so we assume that the only program output is the low security
output. Let p be a probability distribution over the values of H and L. Then,
the semantics of M can be defined by the following probability equation. (We
restrict to terminating deterministic programs in this paper.)

pO=0)= > wH=hL=20
h,£ € H,L
M(h,£) = o
Note that we write M (h,£) to denote the low security output of the program
M given inputs h and ¢. Now, we are ready to introduce the Shannon-entropy
based definition of quantitative information flow (QIF) [11,6, 15].

5 We abbreviate the sample spaces of random variables when they are clear from the
context.

Definition 4 (Shannon-Entropy-based QIF). Let M be a program with a
high security input H, a low security input L, and a low security output O. Let
i be a distribution over H and L. Then, the Shannon-entropy-based quantitative
information flow is defined

SE[u)(M) = T(1)(O; H|L)
— HIpl(H|L) — H]ul(H|O, L)

Intuitively, H[p](H|L) denotes the initial uncertainty knowing the low security
input and H[u](H|O, L) denotes the remaining uncertainty after knowing the
low security output.

As an example, consider the programs M; and M; from Section 1. For con-
creteness, assume that g is the value 01 and H ranges over the space {00,01, 10, 11}.
Let U be the uniform distribution over {00,01,10,11}, that is, U(h) = 1/4 for
all h € {00,01,10,11}. Computing their Shannon-entropy based quantitative
information flow, we have,

SE[U|(My) = H[U|(H) — H[U)(H|O) = log4 — 3log 3 ~ .81128
SE|U|(M2) = H[U|(H) — H|U](H|O) =log4 —logl =2

Hence, if the user was to ask if SE[U](M;) < 1.0, that is, “does M; leak more
than one bit of information (according to SE[U])?”, then the answer would be
no. But, for the same query, the answer would be yes for Ms.

Next, we introduce the min entropy, which Smith [24] recently suggested as
an alternative measure for quantitative information flow.

Definition 5 (Min Entropy). Let X and Y be random variables, and u be an
associated probability distribution. Then, the min entropy of X is defined

Hoo[p](X) = log m

and the conditional min entropy of X given Y is defined

MoKV = o s

where
V[(X) = mas,ex p(X = 2)
Vp)(X]Y = y) = maxgex p(X = z|Y = y)
VIRI(X[Y) =32 ey p(Y = y)V[u](X]Y =)
Intuitively, V[u](X) represents the highest probability that an attacker guesses

X in a single try. We now define the min-entropy-based definition of quantitative
information flow.

Definition 6 (Min-Entropy-based QIF). Let M be a program with a high
security input H, a low security input L, and a low security output O. Let u be a

distribution over H and L. Then, the min-entropy-based quantitative information
flow is defined

ME[u](M) = Hoo[p](H|L) = Hoo) (H|O, L)

Whereas Smith [24] focused on programs lacking low security inputs, we
extend the definition to programs with low security inputs in the definition
above. It is easy to see that our definition coincides with Smith’s for programs
without low security inputs. Also, the extension is arguably natural in the sense
that we simply take the conditional entropy with respect to the distribution over
the low security inputs.

Computing the min-entropy based quantitative information flow for our run-
ning example programs M; and M from Section 1 with the uniform distribution,
we obtain,

ME[U)(M;) = Hoo[U)(H) — Hoo[U)(H|O) = log 4 — log2 = 1
ME[U|(Ma) = Hoo[U)(H) — Hoo[U)(H|O) = log 4 — log 1 = 2

Hence, if a user is to check whether ME[U] is bounded by ¢ for 1 < ¢ < 2, then
the answer would be yes for Mj, but no for Ms.

The third definition of quantitative information flow treated in this paper
is the one based on the guessing entropy [17], that is also recently proposed in
literature [14, 1].

Definition 7 (Guessing Entropy). Let X and Y be random variables, and
1 be an associated probability distribution. Then, the guessing entropy of X is
defined

Glul(X) = Y ixp(X =)
1<i<m
where m = |X| and x1,xa, ..., T, satisfies Vi, 5.0 < j = p(X = ;) > w(X =
Z'j).
The conditional guessing entropy of X given Y is defined

p(XY) =Y (Y [W(X]Y =y)
yeY

where

=[X] and Vi,ji <j= X =Y =y) > u(X =2V =y)

Intuitively, G[u](X) represents the average number of times required for the
attacker to guess the value of X. We now define the guessing-entropy-based
quantitative information flow.

Definition 8 (Guessing-Entropy-based QIF). Let M be a program with a
high security input H, a low security input L, and a low security output O. Let
w be a distribution over H and L. Then, the guessing-entropy-based quantitative
information flow is defined

GE[p)(M) = Gu](H|L) = Gu(H|O, L)

Like with the min-entropy-based definition, the previous research on guessing-
entropy-based quantitative information flow only considered programs without
low security inputs [14,1]. But, it is easy to see that our definition with low
security inputs coincides with the previous definitions for programs without low
security inputs. Also, as with the extension for the min-entropy-based definition,
it simply takes the conditional entropy over the low security inputs.

We test GE on the running example from Section 1 by calculating the quan-
tities for the programs M; and Ms with the uniform distribution.

GE[U](M,) = G[U](H) — G[U|(H|0O) = §
GE[U|(M2) = G[U|(H) - G[U|(H|0) = § —

Hence, if a user is to check whether GE[U] is bounded by ¢ for 0.75 < ¢ < 1.5,
then the answer would be yes for M7, but no for M.

The fourth and the final existing definition of quantitative information flow
that we introduce in this paper is the one based on channel capacity [18,16,
22], which is simply defined to be the maximum of the Shannon-entropy based
quantitative information flow over the distribution.

Definition 9 (Channel-Capacity-based QIF). Let M be a program with a
high security input H, a low security input L, and a low security output O. Then,
the channel-capacity-based quantitative information flow is defined

CcC(M) = mij[u}(O; H|L)

Unlike the Shannon-entropy based, the min-entropy based, and the guessing-
entropy based definitions, the channel-capacity based definition of quantitative
information flow is not parameterized by the distribution over the inputs. As
with the other definitions, let us test the definition on the running example from
Section 1 by calculating the quantities for the programs M; and Ms:

CC(My) =max, Z[p](O; H) =1
CC(Ms) = max, Z[p](O; H) =2

Note that CC (M) (resp. CC(Ms)) is equal to ME[U]|(M;) (resp. ME[U](Mz)).
This is not a coincidence. In fact, it is known that CC(M) = ME[U](M) for all
programs M without low security inputs [24].

2.1 Non-interference
We recall the notion of non-interference [9,12].

Definition 10 (Non-intereference). A program M is said to be non-interferent
iff for any h,h' € H and £ € L, M(h,£) = M(K, ().

It can be shown that for the definitions of quantitative information flow X
introduced above, X(M) < 0 iff M is non-interferent.” That is, the bounding

" Technically, we need the non-zero-ness condition on the distribution for the entropy-
based definitions. (See below.)

problem (which we only officially define for positive bounds —see Section 2.2-)
degenerates to checking non-interference when 0 is given as the bound.

Theorem 1. Let p be a distribution such that Vh € H, ¢ € L.u(h,£) > 0. Then,

— M is non-interferent if and only if SE[p](M) < 0.
— M is non-interferent if and only if ME[u|(M) < 0.
— M is non-interferent if and only if GE[u](M) < 0.
— M is non-interferent if and only if CC(M) < 0.

The equivalence result on the Shannon-entropy-based definition is proven by
Clark et al. [5]. The proofs for the other three definitions are given in Appendix A.

2.2 Bounding Problem

We define the bounding problem of quantitative information flow for each def-
inition of the quantitative information flow introduced above. The bounding
problem for the Shannon-entropy based definition Bgg[u] is defined as follows:
Given a program M and a positive real number ¢, decide if SE[u](M) < g. Sim-
ilarly, we define the bounding problems for the other three definitions Bpg[u],
Begrlu], and Bee as follows.

Buplp] = {(M,q) | ME[u](M) < q}
Beplp] = {(M,q) | GE[u](M) < ¢}
Boo ={(M,q) | CC(M) < ¢}

3 K-Safety Property

We show that none of the bounding problems are k-safety problems for any k.
Informally, a program property is said to be a k-safety property [25, 8] if it can be
refuted by observing k& number of (finite) execution traces. A k-safety problem
is the problem of checking a k-safety property. Note that the standard safety
property is a l-safety property. An important property of a k-safety problem is
that it can be reduced to a standard safety (i.e., 1-safety) problem, such as the
unreachability problem, via a simple program transformation called self compo-
sition [3,10]. This allows one to verify k-safety problems by applying powerful
automated safety verification techniques [2, 13, 20, 4] that have made remarkable
progress recently.

As stated earlier, we prove that no bounding problem is a k-safety property
for any k. To put the result in perspective, we compare it to the results of the
related problems, summarized below. Here, X is SE[U], ME[U], GE[U], or CC,
and Y is SE, ME, or GE. (Recall that U denotes the uniform distribution.)

(1) Checking non-interference is a 2-safety problem, but it is not 1-safety.
(2) Checking X (M;) < X(Ms) is not a k-safety problem for any k.
(3) Checking V. Y[p](M1) < V[u](Ms) is a 2-safety problem.

The result (1) on non-interference is classic (see, e.g., [19,3,10]). The results (2)
and (3) on comparison problems are proven in our recent paper [28]. Therefore,
this section’s results imply that the bounding problems are harder to verify (at
least, via the self-composition approach) than non-interference and the compar-
ison problems for the entropy-based definitions of quantitative information flow
with universally quantified distributions.

Formally, k-safety property is defined as follows.

Definition 11 (k-safety property). We say that a property P C Prog x R
is a k-safety property iff (M, q) € P implies that there exists T C [M] such that
|T| <k and VM'T C[M'] = (M',q) & P.

Here, Prog denotes the set of all programs, and RT is the set of positive real
numbers. [M] denotes the semantics (i.e., traces) of M, represented by the set of
input/output pairs {((h,¢),0) | h € H,¢ € L,0 = M (h,¢)}. Note that the origi-
nal definition of k-safety property is only defined over programs [25, 8]. However,
because the bounding problems take the additional input ¢, we extend the notion
to account for the extra parameter.

We now state the main results of this section which show that none of the
bounding problems are k-safety problems for any k. Because we are interested in
hardness, we focus on the case where the distribution is the uniform distribution.
That is, the results we prove for the specific case applies to the general case.

Theorem 2. Neither Bsg[U|, Byre[U), Bar|U], nor Bee is a k-safety property
for any k such that k > 0.

We defer the details of the theorem to Section 3.1 (see also Section 5.2) as it can
actually be obtained as a corollary of its results.

3.1 K-Safety Under a Constant Bound

The result above appears to suggest that the bounding problems are equally
difficult for all the definitions of quantitative information flow. However, holding
the parameter g constant (rather than having it as an input) paints a different
picture. We show that the problems become k-safety for different definitions for
different k’s under different conditions in this case.

First, for g fixed, we show that the bounding problem for the channel-capacity
based definition of quantitative information flow is k-safety for k = |29] 4 1.
(Also, this bound is tight.)

Theorem 3. Let g be a constant. Then, Boc is |27] + 1-safety, but it is not
k-safety for any k < [21].

We briefly explain the intuition behind the above result. Recall that a prob-
lem being k-safety means the existence of a counterexample trace set of size at
most k. That is, for (M, q) ¢ Bee, we have T C [M] such that |T] < [27] +1
such that any program that also contains T as its traces also does not belong to
Bece (with), that is, its channel-capacity-based quantitative information flow

is greater than ¢. Then, the above result follows from the fact that the channel-
capacity-based quantitative information flow coincides with the maximum over
the low security inputs of the logarithm of the number of outputs [16], therefore,
any T containing |[29] + 1 traces of the same low security input and disjoint
outputs is a counterexample.

For concreteness, we show how to check Bge via self composition. Suppose
we are given a program M and a positive real q. We construct the self-composed
program M’ shown below.

]\4’([11,[’.’27 . ,Hn,L) =
Oy := M(Hy, L); Oy := M(H3, L);....; Oy := M(Hy, L);
assert(\/; jcq1,. a3 (O = Oj Ni # j))

where n = |27] + 1. In general, a self composition involves making k copies the
original program so that the resulting program would generate k traces of the
original (having the desired property). By the result proven by Malacaria and
Chen [16](see also Lemma 5), it follows that M’ does not cause an assertion
failure iff (M, q) € Bece-

Next, we show that for programs without low security inputs, Byg|[U] and
Bgg|U] are also both k-safety problems (but for different k’s) when ¢ is held
constant.

Theorem 4. Let q be a constant, and suppose Bpyg[U] only takes programs
without low security inputs. Then, Byg([U] is |27] + 1-safety, but it is not k-
safety for any k < [29].

Theorem 5. Let g be a constant, and suppose BgglU] only takes programs

without low security inputs. If ¢ > 5, then, BggplU] is LE%L‘E?ZJ + 1-safety,

but it is not k-safety for any k < L(L(L;]’JJFT_)ZJ Otherwise, ¢ < 3 and Bggp[U] is
2-safety, but it is not 1-safety.

The result for ME[U] follows from the fact that for programs without low
security inputs, the min-entropy based quantitative information flow with the
uniform distribution is actually equivalent to the channel-capacity based quanti-
tative information flow [24]. The result for GE[U] may appear less intuitive, but,
the key observation is that, like the channel-capacity based definition and the
min-entropy based definition with the uniform distribution (for the case without
low security inputs), for any set of traces T' = [M], the information flow of a
program containing 7" would be at least as large as that of M. Therefore, by hold-
ing g constant, we can always find a large enough counterexample T". The reason
Bgg[U] is 2-safety for ¢ < % is because, in the absence of low security inputs,
the minimum non-zero quantity of GE[U](M) is bounded (by 1/2), and so for
such ¢, the problem GE[U](M) < q is equivalent to checking non-interference.®

8 In fact, the minimum non-zero quantity property also exists for ME|U] without low
security inputs and CC. There, the minimum non-zero quantity is 1, which agrees
with the formulas given in the theorems.

But, when low security inputs are allowed, neither Byg[U] nor Bgg|U] are
k-safety for any k, even when ¢ is held constant.

Theorem 6. Let g be a constant. (And let Byg[U] take programs with low
security inputs.) Then, Byg[U] is not a k-safety property for any k > 0.

Theorem 7. Let g be a constant. (And let Bag|U] take programs with low se-
curity inputs.) Then, Bggr[U] is not a k-safety property for any k > 0.

Finally, we show that the Shannon-entropy based definition (with the uniform
distribution) is the hardest of all the definitions and show that its bounding
problem is not a k-safety property for any k, with or without low-security inputs,
even when ¢ is held constant.

Theorem 8. Let g be a constant, and suppose Bsg[U] only takes programs with-
out low security inputs. Then, Bgg[U] is not a k-safety property for any k > 0.

Intuitively, Theorems 6, 7, and 8 follow from the fact that, for these defini-
tions, given any potential counterexample 7" C [M] to show (M, q) ¢ Bz, it is
possible to find M’ containing T whose information flow is arbitrarily close to 0
(and so (M’,q) € Bx). See Section 5.2 for further discussion.

Because k tends to grow large as ¢ grows for all the definitions and it is
impossible to bound k for all ¢, this section’s results are unlikely to lead to a
practical verification method. Nevertheless, the results reveal interesting dispar-
ities among the different proposals for the definition of quantitative information
flow.

4 Complexities for Loop-free Boolean Programs

In this section, we analyze the computational complexity of the bounding prob-
lems when the programs are restricted to loop-free boolean programs. The pur-
pose of the section is to compare the complexity theoretic hardness of the bound-
ing problems with those of the related problems for the same class of programs,
as we have done with the k-safety property of the problems.

That is, we compare against the comparison problems of quantitative infor-
mation flow and the problem of checking non-interference for loop-free boolean
programs. The complexity results for these problems are summarized below.
Here, X is SE[U], ME[U], GE[U], or CC, and Y is SE, ME, or GE.

(1) Checking non-interference is coNP-complete
(2) Checking X(M;) < X(Ms) is PP-hard.
(3) Checking Vu.Y[u](M1) < Y[u)(Ms) is coNP-complete.

The results (1) and (3) are proven in our recent paper [28]. The result (2) tightens
our (oracle relative) #P-hardness result from the same paper, which states that
for each C' such that C' is the comparison problem for SE[U], ME[U], GE[U], or
CC, we have #P C FPC. (Recall that the notation FP# means the complexity
class of function problems solvable in polynomial time with an oracle for the

M =z := | Mo; My wp(z =1, ¢) = ¢/ x]
| if ¢ then My else My wp(if ¢ then My else My, ¢)
¢, n=true |z [GNP | 29 = (¥ = wp(Mo, ¢)) A (=) = wp(Mx, $))
wp(Mo; M, ¢) = wp(Mo, wp(Mi, ¢))

Fig. 1. The syntax and semantics of loop-free boolean programs

problem A.) #P is the class of counting problems associated with NP. PP is the
class of decision problems solvable in probabilistic polynomial time. PP is known
to contain both coNP and NP, PH C PF¥ = P#F [26], and PP is believed to be
strictly larger than both coNP and NP. (In particular, PP = coNP would imply
the collapse of the polynomial hierarchy (PH) to level 1.)

We show that, restricted to loop-free boolean programs, the bounding prob-
lems for the entropy-based definitions with the uniform distribution (i.e., SE[U],
ME[U], and GE[U]) and the channel-capacity based definition (i.e., CC) are
all PP-hard. The results strengthen the hypothesis that the bounding problems
for these definitions are quite hard. Indeed, they show that they are complex-
ity theoretically harder than non-interference and the comparison problems with
the universally quantified distributions for loop-free boolean programs, assuming
that coNP and PP are separate.

We define the syntax of loop-free boolean programs in Figure 1. We assume
the usual derived formulas ¢ = ¥, ¢ = ¥, ¢ V ¢, and false. We give the usual
weakest precondition semantics in the figure.

To adapt the information flow framework to boolean programs, we make each
information flow variable H, L, and O range over functions mapping boolean
variables of its kind to boolean values. For example, if x and y are low security
boolean variables and z is a high security boolean variable, then L ranges over
the functions {z,y} — {false, true}, and H and O range over {z} — {false, true}.’
(Every boolean variable is either a low security boolean variable or a high security
boolean variable.) We write M (h,{) = o for an input (h,£) and an output o if
(h,£) |E wp(M,) for a boolean formula ¢ such that o = ¢ and o’ }£ ¢ for all
output o’ # o. Here, |= is the usual logical satisfaction relation, using h, ¢, o,
etc. to look up the values of the boolean variables. (Note that this incurs two
levels of lookup.)

As an example, consider the following program.

M = z:=x;w:=y;if x ANy then z := -~z else w := ~w
Let x, y be high security variables and z,w be low security variables. Then,

SEU|(M)=1.5 GE[U)(M)=1.25
ME[U](M) = log 3 ~ 1.5849625 CC(M) = log3 ~ 1.5849625
9 We do not distinguish input boolean variables from output boolean variables. But,

a boolean variable can be made output-only by assigning a constant to the variable
at the start of the program and made input-only by assigning a constant at the end.

We now state the main results of the section, which show that the bounding
problems are PP-hard for all the definitions of quantitative information flow
considered in this paper.

Theorem 9. PP C Bgg|U]
Theorem 10. PP C Byg|U]
Theorem 11. PP C Bgg|U]
Theorem 12. PP C Bego

We remind that the above results hold (even) when the bounding problems
Bsg([U], BuelU], Ber[U], and Bee are restricted to loop-free boolean pro-
grams. We also note that the results hold even when the programs are restricted
to those without low security inputs. These results are proven by a reduction
from MAJSAT, which is a PP-complete problem. MAJSAT is the problem of
deciding, given a boolean formula ¢ over variables 7, if there are more than
27 |-1 satisfying assignments to ¢ (i.e., whether the majority of the assignments
to ¢ are satisfying).

5 Discussion

5.1 Bounding the Domains

The notion of k-safety property, like the notion of safety property from where it
extends, is defined over all programs regardless of their size. (For example, non-
interference is a 2-safety property for all programs and unreachability is a safety
property for all programs.) But, it is easy to show that the bounding problems
would become “k-safety” properties if we constrained and bounded the input
domains because then the size of the semantics (i.e., the input/output pairs)
of such programs would be bounded by |H|X|L|. In this case, the problems are
at most |H|x|L|-safety.!® (And the complexity theoretic hardness degenerates
to a constant.) But, like the k-safety bounds obtained by fixing g constant (cf.
Section 3.1), these bounds are high for all but very small domains and are unlikely
to lead to a practical verification method. Also, because a bound on the high
security input domain puts a bound on the maximum information flow, the
bounding problems become a tautology for ¢ > ¢, where ¢ is the maximum
information flow for the respective definition.

5.2 Low Security Inputs

Recall the results from Section 3.1 that, under a constant bound, the bounding
problems for both the min-entropy based definition and the guessing entropy-
based definition with the uniform distribution are k-safety for programs without

10 Tt is possible to get a tighter bound for the channel-capacity based definition by also
bounding the size of the output domain.

low security inputs, but not for those with. The reason for the non-k-safety re-
sults is that the definitions of quantitative information flow ME and GE (and in
fact, also SE) use the conditional entropy over the low security input distribu-
tion and are parameterized by the distribution. This means that the quantitative
information flow of a program is averaged over the low security inputs accord-
ing to the distribution. Therefore, by arbitrarily increasing the number of low
security inputs, given any set of traces T, it becomes possible to find a program
containing T' whose information flow is arbitrarily close to 0 (at least under the
uniform distribution). This appears to be a property intrinsic to any definition
of quantitative information flow defined via conditional entropy over the low
security inputs and is parameterized by the distribution of low security inputs.
Note that the channel-capacity based definition does not share this property as
it is defined to be the maximum over the distributions. The non-k-safety result
for Bgg[U] holds even in the absence of low security inputs because the Shannon
entropy of a program is the average of the surprisal [7] of the individual observa-
tions, and so by increasing the number of high security inputs, given any set of
traces T, it becomes possible to find a program containing 7" whose information
flow is arbitrarily close to 0.

6 Related Work

This work continues our recent research [28] on investigating the hardness and
possibilities of verifying quantitative information flow according to the formal
definitions proposed in literature [11,6,15,24, 14,1, 18,16, 22]. Much of the pre-
vious research has focused on information theoretic properties of the definitions
and proposed approximate (i.e., incomplete and/or unsound) methods for check-
ing and inferring quantitative information flow according to such definitions. In
contrast, this paper (along with our recent paper [28]) investigates the hardness
and possibilities of precisely checking and inferring quantitative information flow
according to the definitions.

This paper has shown that the bounding problem, that is, the problem of
checking X (M) < ¢ given a program M and a positive real ¢, is quite hard
(for various quantitative information flow definitions X’). This is in contrast
to our previous paper that has investigated the hardness and possibilities of
the comparison problem, that is, the problem of checking X(M;) < X (Ms)
given programs M; and M. To the best of our knowledge, this paper is the
first to investigate the hardness of the bounding problems. But, the hardness
of quantitative information flow inference, a harder problem, follows from the
results of our previous paper, and Backes et al. [1] have also proposed a precise
inference method that utilizes self composition and counting algorithms.

While the focus of the work is on verification, in the light of the disparities
among the different definitions (cf. Section 3.1 and Section 5), it may be in-
teresting to judge the different proposals based on the hardness of verification.
Researchers have also proposed definitions of quantitative information flow that
are not considered in the paper. These include the definition based on the notion

of belief [7], and the ones that take the maximum over the low security inputs [15,
14]. These are subjects of future study.

7 Conclusions and Future Work

In this paper, we have formalized and proved the hardness of the bounding
problem of quantitative information flow, which is a form of (precise) check-
ing problem of quantitative information flow. We have shown that no bounding
problem is a k-safety property for any k, and therefore that it is not possi-
ble to reduce the problem to a safety problem via self composition, at least
when the quantity to check against is unrestricted. The result is in contrast to
non-interference and the comparison problem for the entropy-based quantita-
tive information flow with universally quantified distribution, which are 2-safety
properties. We have also shown a complexity theoretic gap with these prob-
lems, which are coNP-complete, by proving the PP-hardness of the bounding
problems, when restricted to loop-free boolean programs.

We have also shown that the bounding problems for some quantitative infor-
mation flow definitions become k-safety for different k’s under certain conditions
when the quantity to check against is restricted to be a constant, highlighting
interesting disparities among the different definitions of quantitative information
flow.

A possible future research direction is to investigate the entropy-based bound-
ing problems with their distributions universally quantified, that is, the problem
of deciding if V.Y [u] (M) < ¢ where) is instantiated with SE, ME, or GE. This
is partly motivated by our recent work [28] that has obtained remarkable results
by universally quantifying over the distributions in the entropy-based definitions
in the comparison problems. (That is, checking Vu.SE[u](M1) < SE[up](M2),
Vu.ME[p)(My) < ME[u](Ms), and Yu.GE[u](M7) < GE[u](Ms) are all equiva-
lent and 2-safety, and so that they can all be checked simultaneously via self com-
position, and that they are coNP-complete when restricted to loop-free boolean
programs —cf. Section 1-.) We actually already know the answer for the Shannon-
entropy based definition. That is, Vu.SE[u|(M) < g, as this is simply is equiv-
alent to CC(M) < g, the channel-capacity bounding problem. The problem is
open for the other two entropy-based definitions of quantitative information flow.

References

1. M. Backes, B. Kopf, and A. Rybalchenko. Automatic discovery and quantification
of information leaks. In IEEFE Security and Privacy, pages 141-153, 2009.

2. T. Ball and S. K. Rajamani. The SLAM project: debugging system software via
static analysis. In POPL, pages 1-3, 2002.

3. G. Barthe, P. R. D’Argenio, and T. Rezk. Secure information flow by self-
composition. In CSFW, pages 100-114, 2004.

4. D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software model
checker Blast. STTT, 9(5-6):505-525, 2007.

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

D. Clark, S. Hunt, and P. Malacaria. Quantified interference for a while language.
Electr. Notes Theor. Comput. Sci., 112:149-166, 2005.

D. Clark, S. Hunt, and P. Malacaria. A static analysis for quantifying information
flow in a simple imperative language. Journal of Computer Security, 15(3):321-371,
2007.

M. R. Clarkson, A. C. Myers, and F. B. Schneider. Belief in information flow. In
CSFW, pages 31-45, 2005.

M. R. Clarkson and F. B. Schneider. Hyperproperties. In CSF, pages 51-65, 2008.
E. S. Cohen. Information transmission in computational systems. In SOSP, pages
133-139, 1977.

A. Darvas, R. Hihnle, and D. Sands. A theorem proving approach to analysis of
secure information flow. In SPC, pages 193-209, 2005.

D. E. R. Denning. Cryptography and data security. Addison-Wesley Longman
Publishing Co., Inc., 1982.

J. A. Goguen and J. Meseguer. Security policies and security models. In IEEE
Security and Privacy, pages 11-20, 1982.

T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In
POPL, pages 58-70, 2002.

B. Kopf and D. Basin. An information-theoretic model for adaptive side-channel
attacks. In CCS, pages 286296, 2007.

P. Malacaria. Assessing security threats of looping constructs. In POPL, pages
225-235, 2007.

P. Malacaria and H. Chen. Lagrange multipliers and maximum information leakage
in different observational models. In PLAS, pages 135-146, 2008.

J. L. Massey. Guessing and entropy. In ISIT, page 204, 1994.

S. McCamant and M. D. Ernst. Quantitative information flow as network flow
capacity. In PLDI, pages 193-205, 2008.

J. McLean. A general theory of composition for trace sets closed under selective
interleaving functions. In IEEE Security and Privacy, pages 79-93, 1994.

K. L. McMillan. Lazy abstraction with interpolants. In CAV, pages 123—-136, 2006.
D. A. Naumann. From coupling relations to mated invariants for checking infor-
mation flow. In ESORICS, pages 279-296, 2006.

J. Newsome, S. McCamant, and D. Song. Measuring channel capacity to distinguish
undue influence. In PLAS, pages 73-85, 2009.

C. Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27:379-423, 623-656, 1948.

G. Smith. On the foundations of quantitative information flow. In FOSSACS,
pages 288-302, 2009.

T. Terauchi and A. Aiken. Secure information flow as a safety problem. In SAS,
pages 352-367, 2005.

S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput.,
20(5):865-877, 1991.

H. Unno, N. Kobayashi, and A. Yonezawa. Combining type-based analysis and
model checking for finding counterexamples against non-interference. In PLAS,
pages 17-26, 2006.

H. Yasuoka and T. Terauchi. Quantitative information flow - verification hardness
and possibilities. In CSF, 2010.

A Proofs

We define some abbreviations.
Definition 12. u(z) £ u(X = z)

We use this notation whenever the correspondences between random variables
and their values are clear.

We elide the parameter ¢ from the input to the bounding problems when it
is clear from the context (e.g., when ¢ is held constant). For example, we write
Bsg[U](M) and M € Bgg|U] instead of Bgg[U](M,q) or (M,q) € BsglU].

We note the following properties of deterministic programs [5].

Lemma 1. Let M be a program without low-security inputs, M’ be a program
with low-security inputs. Then, we have

SE[p](M) = Z[u](O; H) = H[u](0)

and,
SE[p](M') = Z[u)(O; H|L) = H[u](O|L)

Definition 13.
In(p, X,z) = {z" € X | u(a’) > p(z)}|
Intuitively, In(u, X, z) is the order of = defined in terms of p.
Lemma 2.
GIul(X) = Yi<i<ix)ip(zi)
= wEXIn(M7Xa x),u(a:)

Proof. Trivial.

Theorem 1 Let u be a distribution such that Yh € H, ¢ € L.u(h,€) > 0. Then,

M is non-interferent if and only if SE[u)(M) <

M is non-interferent if and only if ME[u](M) <
<
0

0.
— M is non-interferent if and only if GE[u](M) < 0.
— M is non-interferent if and only if CC (M) <

Proof. Let O = {M(h,£) |h € HAL € L}.

- SE
(See [5].)
- MFE

- GE

=
Suppose M is non-interferent. By the definition, it suffices to show that

VIp(HIL) = V[pl(H|L, O)

That is,

%:/«L(é) max ju(h|() = ;u(& o) max u(h|¢, 0)
We have for any ¢, and o, such that u(€;,0.) > 0, p(ly,0.) = p(ls),
and for all h,, £,, and o, such that u(hy,£,,0,) > 0, for any hj and
o' € O\ {oy}, p(hy, £y, 0,) = 0. Therefore, we have

20,0 (L, 0) maxp, p(hll,0) =32, , u(€; 0) maxy N;(L? x §)

— ¥, 1(¢) maxy, 4050

= >_, 1(€) maxy, p(h|)

“—=
We prove the contraposition. Suppose M is interferent. That is, there
exist hy, ho, and ¢’ such that M (hq,¢") # M(ha,). Let 00 = M (hq, ')
and o2 = M (ha, £"). We have

> oo () maxy, pu(h|l) = A + maxy, p(h, ')

where A =3,y \ (o maxy p(h,). And,

5.0 £t 0) maxs p(hl¢, 0
=B+ maxy pu(h, ', 0)

where B = 3_ e (o)) xo Maxp fi(h, £, 0). Trivially, we have A < B
and
/ /
m}ilxu(h,é) < ;mﬁlxu(h,é ,0)

Therefore, we have ME[u](M) > 0.

=
Suppose M is non-interferent. By the definition,

GEu)(M)
=5, 3 IR (I £), H h)u(h £)
S Y In(AR (R, £, 0), E hu(h, £,0)
= 5,3 IR (I £), H.)u(h £)
S S I (K €), HL,), £)
=0

since for all h,, £,, and o, such that u(hy,%s,0,) > 0, for any A’ and
o € O\ {o,}, u(hl, 4y, 0,) =0.

° &=
We prove the contraposition. Suppose M is interferent. That is, there
exist hy, hg, and ¢’ such that M (hy, ') # M(hg,?'). Let o1 = M (hy,¢)
and oy = M(ho,¢'). By the definition,

GE[u](M)
= Zé Eh I”(/\h/-ﬂ(hlv Z)v Ha h)u(hv 6)
- Zé,o Zh In(/\h/'u“(h,v £7 O)v H’ h):u‘(h7 Ea 0)
— A+, In(AR (b 0), H,) u(h, £)
—B =3, >, In(AR (B, 0 0), H, h)u(h, £, 0)

where

A= ZEE]L\{K’} Zh In(Ah/M(h’I7 Zl)> Ha h):u’(ha f/)
- Z(K)O)E(L\{e'})X@ Zh In()\h’,u(h’, gl? O)? Ha h):u(h7 E/a 0)

Trivially, we have A > B and

Zh In()‘h,'u(hlv 6/)’ H, h)/"(h7 Z/)
>3 3 In(AW w0 0), H, h)u(h, €', 0)
Therefore, we have GE[u](M) > 0.
- CC
=
Suppose M is non-interferent. By Lemma 1, for any u,

SE[p](M) = H[u)(O|L)
:Z ZZ/LO@OgJE(g
Z >, 1o, £) log 43

since p(o,€) = p(€). Therefore, we have Yu.SE[u](M) = 0. It follows
that CC(M) = 0.

o =
We prove the contraposition. Suppose M is interferent. That is, there ex-
ist hy, ho, and ¢’ such that M (hy, ') # M (hs,¢'). Let 0y = M (hy,{'), and
02 = M (ha,?). Let 1/ be a distribution such that p/(hq,¢') = ' (he, ') =
%. By Lemma 1,

SE[W](M) = H[w'|(O|L)

= p/(01,¢') log ;Lfé(ff,g’) + 1/ (02,£7) log ufi(o(fvl?’)
= log 2

=1

< max,, SE[u](M)

= CC(M)

We note the following equivalence of C'C and ME[U] for programs without
low security inputs [24].

Lemma 3. Let M be a program without low security input. Then, ME[U|(M) =
CC(M).

Theorem 2 Neither Bsg[U], Byr[U], Bar([U], nor Boc is a k-safety property
for any k such that k > 0.

Proof. — Bgg|U] is not a k-safety problem for any k such that k& > 0.

Trivial by Theorem 8.

— BuyglU] is not a k-safety property for any k such that & > 0.
Trivial by Theorem 6.

— BgglU] is not a k-safety property for any k such that k& > 0.
Trivial by Theorem 7.

— Bge is not a k-safety property for any k such that & > 0.
Straightforward from Lemma 3 and Theorem 2.

Malacaria and Chen [16] have proved the following results relating the channel-
capacity based quantitative information flow with the number of outputs.

Lemma 4. Let M be a program without low security input and QO be the output
of M. Then, CC(M) = log(|0)]).

Lemma 5. Let M be a program (with low security input). Then,
CC(M) = maxey, log | M[H,]|
where M[H, ¢] = {o| o= M(h,{) N h € H}.

Theorem 3 Let q be a constant. Then, Boo is |22 4+ 1-safety, but it is not
k-safety for any k < [29].

Proof. First, we prove Boo for low-security input free programs is |[29] 4 1-
safety. Let M be a program such that M ¢ Bgoe. By Lemma 4, it must be the
case that |ran(M)| > |2%] + 1 where ran(M) is the range of M. Then, there
exists T C [M] such that |T| < [29] + 1 and ran(T) > [2%] + 1. Then, by
Lemma 4, it follows that for any program M’ such that T C [M'], M’ ¢ Bec.
Therefore, Boc is a |27] + 1-safety property.

Second, we prove that Boe for programs having low-security input is also
|27] + 1-safety. Let M be a program such that M ¢ Bge. By Lemma 5, it
must be the case that there exists ¢ such that |[M[H,¢]| > [27] + 1. Then,
there exists T' C [M] such that |T| < |29] 4+ 1, ran(T) > |27] + 1, and for all
((h,0"),0) € T, ¢' = {. Then, by Lemma 5, it follows that for any program M’
such that T C [M'], M’ € Bce. Therefore, Boe is a |27] + 1-safety property.

Finally, we prove that Boc[U] is not k-safety for any k < [29]. Let k < [29].
For a contradiction, suppose Boc is a k-safety property. Let M be a program
such that M & Bcoc. Then, there exists T such that |T'| < k and T C [M], and
for any M’ such that T' C [M'], (M',q) € Beoc. Let T = {(h1,01), ..., (hi,0:)}.

Let M be a program such that [M] = T. More formally, let M be the following
program.

M(hl) 01
M(hg) = 02
M (hs) = o

Then, we have ~
OO(M) = lOg |{01, 02,... ,Oi}|
<logk
< log([27])
< log 21
<gq

It follows that M € CC|[q], but T C [M]. Therefore, this leads to a contradiction.

Theorem 4 Let q be a constant, and suppose Byg[U] only takes programs with-
out low security inputs. Then, Byg|U]| is [21] + 1-safety, but it is not k-safety
for any k < |27].

Proof. Straightforward by Theorem 3 and Lemma 3.

Lemma 6. Let M be a program with a high security input and a low-security
output. Then, we have GE[U)(M) = % — 5= 3" |H,|* where n is the number of
inputs, and H, = {h | o= M(h)}.
Proof. By the definition, we have
GE[U)(M) = G[U|(H) — GIU](H|O)
= >, In(U,H, h)U(h)
=22, U(0) 22, In(AW .U (I[0), H,, h)U (h|o)
=Linm+1) -3, 3 7 Lol (FLo| +1)
=”+*—%Z |]HI ?-3
5~ a5 2o [Hol?
Lemma 7. Let M and M’ be low-security input free programs such that [M']] =
MU {(h,0)} and h & dom([M]]). Then, we have GE[U](M) < GE[U|(M’).
Proof. We prove GE[U|(M') — GE[U](M) > 0. Let n = |[M]]|, O = ran([M]),
H = dom(M), and H, = dom(h | o = M (h)).
By Lemma 6, we have

GE[U)(M) — GE[U)(M)

= 2 — sy (B + (JHo| +1)%) = 8 + 5(B + [Ho|*)
é + gty (—n(B + ([Ho| + 1)%) + (n+ 1)(B + |H,[?))
m(n(n +1) —n(|H,| + 1)2 + B+ (n+ 1)(|Ho|2))
ﬁm — 2n|H,| + [H,|> + B)
s (= [Ho|)? + B)
0

where B =3, co\ {0} |Hy |? and H, = {h | o’ = M(h)}.

AV

Lemma 8. Letq > % Let M be a program without low security inputs such that
GE[U|(M) > q,YM'.[M'] € [M] = GE[U](M’) < q, andVM" .(GE[U](M") >
g A(YM[M'] € [M] = GE[U(M) < q)) = [[M])| > |[M"]]. It must be the

case that |[M])| < Ligﬁ{r‘ilij +1.

Proof. First, we prove M has exactly two outputs. Let n be an integer such that
n = |[M])|. If M returns only one output, we have GE[U](M) = 0. Therefore,
M must have more than 1 output, since GE[U](M) > q. We have for any o’

GE[U|(M) = g Ln(BJr(n—z)?)
= (B+Z)

where i = 3 o\ oy [Ho| and B = 35 g\ 1,y [Hol*. Because GE[U](M) > g,
we have ¢ > ¢q. Then, we have

GE[U)(M) > q iffi — B > ¢

B-‘rz
iff n > 5G9

By the definition of M, we have YM'.[M'] C [M] = GE[U](M') < q. Let
[M] = [M]\{(R,0)} where M(h') = o’. Then, we have

GE[U)(M) < q iffi —](3n+11 <gq
iff n < 55 +1
Hence, we have
B+ i? . B+ i 1

2(i —q) 2(i —q)
Because B =} co\ (o} |H,|? and i = >oco\{o'} Hol, the largest n occurs when
B = i%. That is, when M has exactly two outputs.

Next, we prove |[M]| < L(Lé]zfll ;) + 1. Recall that i = 3~ g\ (o [Hol|. Let

j =n—1i. We have
GE[U|(M) =i - igl(z'? + %)

_ (n=j)?

This means that j > g. Recall that [M] = [M]\ {(¥,0)} where M(h') = o'.
Then, we have
GE[U)(M) < q iffi — 25 < g
iffn < 5+ 1

Because n is an integer, we have n < L.i cJ+landn < LJ 1 Let f =

11—2 +1= % + 1. By elementary real analysis, it can be shown that for integers
i and j such that ¢ > ¢ and j > ¢, f attains its maximum value when ¢ = [¢] +1

or j = |¢q] + 1. Therefore, it follows that |[[M]| =n < L(L(Lﬁjﬂl)qj + 1.

Lemma 9. Let ¢ > % Let M be a program without low-security inputs such
that GE[U|(M) > q. Then, there exists T such that

~reM
- IT1 < |+

— GE|U|(M') > q where [M'] =T.

Proof. Let q > 3. Let M be a program such that GE[U](M) > ¢q. By Lemma 7
and the fact that GE[U](M) is bounded by M, there exists T such that

- TcM]

~ GE[U](M’) > q where [M] =T _

— VI" CT.GE[U](M) < q where [M] =T".

By Lemma 8, we have |T| < L(ngﬂ_ﬁl_ij + 1. Therefore, we have the conclusion.

Theorem 5 Let q be a constant, and suppose Bag[U] only takes programs with-
2
out low security inputs. If ¢ > %, then, Bgg[U] is L(Lqﬁl) | + 1-safety, but it is

lal+1—q

not k-safety for any k < L%J. Otherwise, q < 3 and BgglU] is 2-safety,
but it is not 1-safety.
Proof. First, we prove Bgg|U] for programs without low-security inputs is L&ﬁffj;] +
1-safety for ¢ > % By the definition of k-safety, for any M such that M ¢
Bgg|[U], there exists T' such that
1. T C[M]

(laJ+1)?
2. |7 < | jgrrrzg] +1

q
3. VM'.T C [M'] = M' ¢ BgplU]
We show that if M € Bgg[U], then there exists T such that

T [[]W(]L] J+1)?
— 171 < Lygpgrql +1

— GE[U)(M') > q where [M'] = T.

Note that GE[U](M’) > q and Lemma 7 imply the condition 3 above. Suppose

that M & Bgg[U]. Then, by Lemma 9, there exists T C [M] such that |T| <
2
|4 | 41, and GE[U)(M') > q where [M'] = T.
Next, we prove Bgg[U] for programs without low-security inputs is not k-

safety for any k < L(ngfll,)z

property. Let M be a program such that

|. For a contradiction, suppose Bgg|U] is a k-safety

M(hl) =0

M(hg) =0

M(hi) = 0
M(hi+1) = 0/
M(hit2) =0

where hy, ha, ... h, are distinct, n = L%%j +1,and ¢ = |¢] + 1. Let H, =

{h]o=M(h)} and and H, = {h | o’ = M(h)}. By Lemma 6, we have

GEU)(M) = 5 — o (|Ho|* + [Ho[?)

o (lal+1)?
= lal+1- e

la]+1—¢q

Let p=|q| + 1. If (L(L;J”-:rll—)jz is an integer, then we have

_ P’—pa+p’q

= Q(pzéi;‘;g)_qz + 1)

>q

The last line follows from p?q + pq — ¢% = p?q + q(p—q) > 0.
Otherwise, we have L(LqJH)zJ +1= [(Lqu)QW > (Lal+1)*

la]+1—q laJ+1—¢q lg]+1—q"
GEWI(M) =p = o
o p
—p-nig
=4q

Hence, we have GE[U](M) > q. Therefore, M ¢ Bgg[U]. Then, there exists T
such that [T < k, T C [[M], and for any M’ such that 7' C [M'], M" & Bgg[U].
Let M be a program such that [M] = T. Then, by Lemma 6 and Lemma 7, we

have

GE[U)(M) < nT_l 722(n1—1) (i*+ (n—1-1)?)

=q
It follows that M € Bgg[U]. Recall that T C [M]. Therefore, this leads to a
contradiction.
Next, we prove that Bgg[U] is 2-safety for any ¢ < % It suffices to show that
GE[U](M) < ¢ iff M is non-interferent, because non-interference is a 2-safety
property [19, 3, 10]. We prove that if GE[U](M) < ¢ then M is non-interferent.

The other direction follows from Theorem 1. We prove the contraposition. Sup-
pose M is interferent. It must be the case that there exist A and h' such that
M(h) # M(h). Let o = M(h), and o’ = M(R'). Let M’ be a program such that
[M'] = {(h,0),(h,0")}. Note that we have [M'] C [M]. By Lemma 7, we have

GE[U)(M') = = < GE[U](M)

1
2
It follows that GE[U](M) > q.

Lemma 10. Let M be a program that has a low-security input, a high-security
input, and a low-security output. Then, we have

ME[U](M) = log 1]
|L|
where L is sample space of the low-security input, and O, = {(0,¢) | Ih.o = M (h,{)}.
Proof. By the definition of ME, we have
ME[U)(M) = HoU)(HIL) ~ HolU)(HIO, L)
= o8 yoyaTny — 108 voTEe D)
VIUI(H|L) = 21:@ U (¢) maxy, U(h|¢)

and
VIUJ(H|O,L)=3",%,U(0,¢) maxy, U(hl|o,?)
_ S [{hlo=M (h.0)}| 1
\©o| ¢ = [{hlo=M (h,£)}]
= THIL]

It follows that

ME[UY(M) = log yo7tzrzy — 108 yrormao o

HI|L
= log |H| — log I‘@l)lm‘
0

Theorem 6 Let g be a constant. (And let Byg|U] take programs with low se-
curity inputs.) Then, ByglU] is not a k-safety property for any k > 0.

Proof. For a contradiction, suppose Byg[U] is a k-safety property. Let M be
a program such that M ¢ Bpyg[U]. Then, there exists T' such that |T| < k,
T C [M], and for any M’ such that T C [M'], M’ ¢ Bug|U]. Let T =
{((h1,£1),01),...,((hi,£;),0:)}. Let M be the following program.

M (hy,01) = o1
M(hg,fg) = 02
7M(h“€1) = 0;

M(hi+1a €i+1) =04

M (hiyo,liv2) = 0;

M(hnaen) = 05

where n = |H||L|, and H,L are the high security inputs and the low security
inputs of M. Then, by Lemma 10, we have

Therefore, for any ¢ > 0, there exists L such that ME[U](M) < g and T C [M]).
Therefore, this leads to a contradiction.

Lemma 11. Let M be a program that has a high-security input with sample
space H, a low-security input with sample space L, and low-security output. Then,
we have GE|U|(M) = @ - m Dok |H,¢|> where H, o = {h | 0= M(h,0)}.
Proof. By the definition, we have
GE[U](M) = G[U(H|L) — G[U](H|O, L)
=>,U) >, In(AR . U(R|C),H, h)U(h|¢)
— Zo,e U(0,€) >, In(AW .U (W |o,€),H, ¢, h)U(h|o,)

H|+1 H,,

= B S e ey o (1o o] + 1)
H

= % - 2\]HI1||]L| Zo,e [Ho, >

Theorem 7 Let g be a constant. (And let Bag[U] take programs with low se-
curity inputs.) Then, Bgg[U] is not a k-safety property for any k > 0.

Proof. For a contradiction, suppose Bgg|[U] is a k-safety property. Let M be
a program such that M ¢ Bgg[U]. Then, there exists T such that |T| < k,
T C [M], and for any M’ such that T C [M'], M’ ¢ Bgg[U]. Let T =
{((h1,€1),01),---,((hi,€;),0:)}. Let M be the following program.

M(hy,41) = 01
M(hg,gg) = 09
7M(h1,£l) = 0;

M(hi+1; €i+1) = 04

M(hiy2,liy2) = 0;
M(hmna Emn) = 04

where n = [H| and m = |L|, and H,L are the high security inputs and the low
security inputs of M. Then, by Lemma 11, we have

GEUNM) = 5 = 57 3 ¢ [Ho e[
< 2 — 7 (in+ (m —i)n?)
— _lern(_m”2 +in + (m —i)n?)

Therefore, for any g > 0, there exists L such that GE[U](M) < q and T C [M]).
Therefore, this leads to a contradiction.

Theorem 8 Let q be a constant and suppose Bsg[U] only takes programs with-
out low security inputs. Then, Bgg[U] is not a k-safety property for any k > 0.

Proof. For a contradiction, suppose Bgg[U] is a k-safety property. Let M be
a program such that M ¢ Bgg[U]. Then, there exists T' such that [T < k,
T C [M], and for any M’ such that T C [M'], M’ ¢ Bgg|U]. Let T =
{(h1,01),...,(hi,0;)}. Let M and M’ be the following program.

where hy, ha, ..., h, are distinct, and o], o, ..., 0}, and o' are distinct. Then,
we have

n

SE[U)(M) < SE[U)(M")
= —logn + "~ log "=
=log - + Llog(n — 1)

n—u

Therefore, for any g > 0, there exists M such that SE[U](M) < g and T C [M]).
Therefore, this leads to a contradiction.

Notation In the proofs below, for convenience, we sometimes use large letters
H, L, O, etc. to range over boolean variables as well as generic random variables.

Lemma 12. Let ﬁ and H' be distinct boolegn random variables. Let n and m
be any non-negative integers such thatn < 271 andm < 2171 Let ¢,,, (resp. ép)

be a formula over H having m (resp. n) satisfying assignments. Then, n < m iff
SE[U|(My,) < SE[U|(My,). where M,, = O := ¢p,VH' and M,, = O := ¢, VH'.

Proof. Let h = |ﬁ| We have

h_p, ht1 hyp, ht1
SE[U|(M,,) = 22h+1 log 22h,n + 22hi1 log 22h+n

h_ htl h ht1
SE[U)(M,) = 22h+’1” log 22,1,_m + 24m og 2

2h+1

H|
p= 722};1? and q= 222%71” We have 0 S q S p S % Therefore)

Suppose n < m < 2 Let p and ¢ be positive real numbers such that

=plog § + (1 —p)log 1= —qlog ¢ — (1 — q)log 1=,
)P + log(12=)1 77 + log ¢7 + log(1 — ¢)' ¢

—p

PP 5% (125)"(1 — q)

i s A s AT

1—1
—t>1byp>q=0.
q

because }_;Z > 1 and
-«
We prove the contraposition. Suppose m < n < 2|ﬁ|. Let p and g be positive
h h
real numbers such that p = 22,171? and ¢ = 22,%1" We have 0 < p < ¢ < %
Therefore,

SEU|(M,) — SE[U|(M,,)
= qlog ¢ + (1 —q)log = —plog 3 — (1 — p)log 1%
= log(1)7 + log(ﬁ)l_q + log p? + log(1 — p)'=?

~

_ 1og<§)q<1%q>l—qpp<1 —)

- 1og(§ 11 = q)* 20" (15)P(1 — p)
— 1—

= log(—1) 175 (+25)"

> log(Lot)a(£y

> log(Lot)p (120)

_ (1—g)p

- 1Og(q(l—p) :

= log =21

~ os(bicty

= log(=%)”

>0

1—1
—+t>1byg>p=>0.

q
1
P

1—
because ﬁ > 1 and

Theorem 9 PP C Bgg[U]

Proof. We prove by reducing MAJSAT, which is a PP-complete problem, to
Bsgp[U]. MAJSAT is defined as follows.

MAJSAT = {¢ | #SAT(¢) > 2"}

where n is the number of variables in ¢. Let ¢ be a boolean formula. Let ¢ be
the real number such that
q= SE[U|(O =%V H)
n n—1 n n—1 n—1__ n—1__
__2 +22n+1 +1 og 2 4-2271+1 +1 _ 22n+1 Liog 22n+1 1
where 1) is a boolean formula such that #SAT (1)) = 2"~ +1, and H is a boolean
variable that does not appear in ¢ and ¢. We have

BsglU)(O:=¢V H) <q< Bsp|U](O:=¢V H) < Bgg[U](O:=vV H)
< SE[U(O:=¢V H)<gq
& #SAT(9) > #SAT(¥)
& #SAT(¢) > 21 +1
& #SAT(¢) > 271
& ¢ € MAJSAT

by Lemma 12. Therefore, we can decide if ¢ € MAJSAT by deciding if SE[U](O :=
¢V H) < q. Note that O := ¢ V H and ¢ can be constructed in time polynomial
in the size of ¢. Therefore, this is a reduction from MAJSAT to Bgg[U].

T(¢) =
if @
then Oy := true; 8 :
else Oy := false; 8 =H

—
= false

where Oy and 8 are distinct.

Fig. 2. Boolean formula encoding by a boolean program

Lemma 13. Let ﬁ be distinct boolean variables. Let ¢ be a boolean formula.
Then, we have ME[U|(T(¢)) = log(#SAT(—¢) + 1) where T is defined in Fig-
ure 2.

Proof. Tt is easy to see that the number of outputs of T'(¢) is equal to the number
of satisfying assignment to —¢ plus 1. Therefore, it follows from Lemma 10 that
ME[U|(T(¢)) = log(#SAT (=¢) + 1).

Lemma 14. Let ﬁ and H' be distinct boolean random variables. Let m be any
non-negative integers such that m < 2|ﬁ‘, Let ¢, be a formula over H having m
satisfying assignments. Let ¢’ be a formula over ﬁ having Z‘ﬁlfl + 1 satisfying
assignments. Then, m > ol -1 + 1 iff ME[U|(T(¢m)) < ME[U|(T(¢')) where
T is defined in Figure 2.

Proof. By Lemma 3, Lemma 4, and Lemma 13, we have
ME[U(T(¢m)) < ME[U|(T(¢)))

iff
olH| _

log(m+1) <log@H1 —141)

iff

Theorem 10 PP C Byg[U]

Proof. We prove by reducing MAJSAT to Byg[U]. Let ¢ be a boolean formula.
Let ¢ be the real number such that

q = ME[U|(T(v))
— log(2""1)
=n-—1

where n is the number of boolean variables in ¢, and 1 is a boolean formulas
such that #SAT () = 2"~ + 1. We have

ME[U|(T(¢)) < q & ME[U](T(¢)) < ME[U|(T(v))
& #SAT(¢) > 271 +1
& #SAT(p) > 21
& ¢ € MAJSAT

by Lemma 14. Therefore, we can decide if ¢ € MAJSAT by deciding if ME[U](T(¢)) <
q. Note that T'(¢) and ¢ can be constructed in time polynomial in the size of ¢.
Therefore, this is a reduction from MAJSAT to Byg[U].

Definition 14. Let M be a function such that M : A — B. For any o € B, we
write M—1(0) to mean

M~0)={ieAlo=M(@)}

Lemma 15. Let ﬁ and H' be distinct bgolean random wvariables. Let n and m
be non-negative integers such that n < 2171 and m < 211, Let ¢,,, (resp. ¢y,) be

a formula over H having m (resp. n) satisfying assignments. Then, m < n iff
GE[U)(M,) < GE[U|(M,,). where M,, = O := ¢p,VH' and M, = O := ¢, VH'.

Proof. By the definition,

GE[U)(M) = G(H) — G(H|0)
=32 + 5 = ¥, Xicicym U (hiy 0)
=2 — L (|M~(true)[> + | M~ (false)|?)

Therefore, we have
GE[U)(M,) < GE[U)(M,,)

iff
\M7;1(true)|2 + | Mt (false)|2
< |M, t(true)|? + | M, (false)|?
iff
m<n

Theorem 11 PP C Bgg[U]

Proof. We prove by reducing MAJSAT, which is a PP-complete problem, to
Bgg[U]. Let ¢ be a boolean formula. Let ¢ be the real number such that

q=GEO:=vyVH)
27L+1

=2 2,LH(\M L(true)|> + | M ~1(false)|?)

= 27— (2 + 124 (20 - 1))

where n is the number of boolean variables in ¢, and v is a boolean formula such
that #SAT (1)) = 2"~! + 1, and H be a boolean variable that does not appear
in ¥ and ¢. We have

GE[U)(O := ¢V H) < q < GE[U)(O = ¢ v H) < GE[U)(O := ¢V H)
& GE[U|(O:=¢V H)<q
& #SAT(¢) = #SAT(Y)
& #SAT() > 271 +1
& #SAT(¢) > 2n!
& ¢ € MAJSAT

by Lemma 15. Therefore, we can decide if ¢ € MAJSAT by deciding if GE[U](O :
¢V H) < gq. Note that O := ¢ V H and ¢ can be constructed in time polynomial
in the size of ¢. Therefore, this is a reduction from MAJSAT to Bgp[U].

Theorem 12 PP C Bge

Proof. Straightforward from Lemma 3 and Theorem 10.

