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Abstract. We present an automated approach to verifying termination of higher-

order functional programs. Our approach adopts the idea from the recent work on

termination verification via transition invariants (a.k.a. binary reachability anal-

ysis), and is fully automated. Our approach is able to soundly handle the subtle

aspects of higher-order programs, including partial applications, indirect calls,

and ranking functions over function closure values. In contrast to the previous

approaches to automated termination verification for functional programs, our

approach is sound and complete, relative to the soundness and completeness of

the underlying reachability analysis and ranking function inference. We have im-

plemented a prototype of our approach for a subset of the OCaml language, and

we have confirmed that it is able to automatically verify termination of some

non-trivial higher-order programs.

1 Introduction

Recent years have witnessed a dramatic progress in automated verification of higher-

order functional programs [27, 31, 24, 11, 16, 33, 37]. The line of work takes the ideas

from the recent advances in the verification of non-functional programs, such as pred-

icate abstraction, counterexample-guided abstraction refinement, and interpolation [1,

9, 21, 10], to the verification of higher-order functional programs by way of refinement

(dependent) types [36] and higher-order model checking [23, 14].

However, except for the case when the base-type data is of a finite domain [15,

20], the above line of work (to the extent of software model checking techniques for

higher-order programs) has been limited to the verification of safety (i.e., reachability)

properties. In particular, it is unable to verify liveness properties, such as termination.

For automated termination verification of higher-order programs, popular methods

have been based on size-change termination [12, 29, 28] or TRS (term rewriting sys-

tems) techniques [6]. (Besides them, Xi [35] has proposed termination analysis based

on dependent types, but his technique is not fully automated in the sense that users

have to provide dependent types of recursive functions as witness of termination.) The

current methods based on those approaches are not completely satisfactory, especially

in terms of precision. Roughly, these techniques first construct a finite graph (called a

⋆ This work was supported by MEXT Kakenhi 23220001, 23700026, 25280023, and 25730035.



let rec app f x () =

if x>0 then app f (x-1) () else f x () in

let id () = () in

let rec g x = if x=0 then id else app g x in

let t = * in g t ()

Fig. 1. A non-terminating higher-order program.

static call graph [12, 29, 28] or a termination graph [6]) that over-approximates certain

dependencies on termination, and then use techniques for first-order programs [19, 7] to

show that there is no cyclic dependency. In these two-phase approaches to termination,

information is often lost in the first phase; see Section 5 for more details.

In the present paper, we follow an approach based on transition invariants [26, 4, 5],

and extend it to deal with higher-order functional programs. The transition-invariant-

based approach has emerged as a powerful technique for verifying termination of first-

order imperative programs [26, 4, 5]. The technique iteratively reduces the termination

verification problem to the problem of checking the binary reachability of program

transition relations. It then delegates the binary reachability checking to a reachability

checker by encoding the problem as a plain reachability problem via a program trans-

formation. Advantages of this approach are that termination arguments can be flexibly

adjusted for each program by choosing an appropriate binary reachability relation, and

that precise flow information can be taken into account in the plain reachability verifica-

tion phase. The latter advantage is particularly important since the termination property

often depends on safety properties. For example, consider the program:

let f x = if p(x) then () else loop_forever()

Then, a call of f terminates if and only if p(x) is true, and the latter condition can

be checked during the reachability verification. In the higher-order case, termination

verification would be even more complicated since the condition can be passed as a

parameter of f. This shows the advantage of reducing termination verification to reach-

ability verification, where all the relevant information (such as value-dependent control

flow and size change) is put together and precisely analyzed by taking advantage of the

recent advance of reachability verification tools for higher-order programs.

The extension of the transition invariant-based technique for higher-order programs

is non-trivial. To see why, let us consider the OCaml program P0 shown in Figure 1.

(Here, * denotes a non-deterministic integer.) The program is non-terminating for any

non-deterministic choice of t such that t < 0. For example, for t = −1, the program

exhibits the following infinite reduction sequence.

g (-1) () →∗ app g (-1) ()→∗ g (-1) ()→∗ app g (-1) () →∗ · · ·

Note here that g is passed to and indirectly called by app, and there is no direct call

to g in the definition of g. Moreover, g itself does not (totally) call app but returns a

partially applied closure of the form app g n. Therefore, a termination verifier must

soundly handle indirect calls and function closures to avoid incorrectly reporting that

the program is terminating.



For a terminating example, let us consider a variation P1 of the above program,

obtained by replacing the branching condition x = 0 in g with x ≤ 0. To prove that

P1 is terminating for any non-deterministically chosen t (and any non-deterministic

choice of the integers chosen inside g), we need to know that the sequence of the third

arguments passed to the recursive calls to app is strictly decreasing and is bounded

below by 0.

Our technique consists of: (i) a method to find an appropriate (disjunctively) well-

founded relation, including those over function closure values, that over-approximates

the binary reachability relation (the relation between two recursive function calls), (ii) a

program transformation that reduces the binary reachability problem to the plain reacha-

bility problem, and (iii) a plain reachability analysis for higher-order programs. For (iii),

we employ off-the-shelf reachability verification tools for higher-order programs [27,

31, 11, 16, 33, 37]. For (i), we adopt the previous technique [33] for automatically in-

serting implicit integer parameters that represent information about function closures.

We can then adopt the existing techniques to find ranking functions (on integer argu-

ments) from counterexamples [25, 3, 5]. The most subtle part is (ii): how to reduce the

binary reachability analysis to plain reachability analysis. Actually, Ledesma-Garza and

Rybalchenko [18] has recently tackled this problem, but (as admitted in [18], Section 8),

their solution does not work quite well in the presence of partial applications and indi-

rect function calls. In fact, their method cannot properly deal with the programs P0 and

P1 above (cf. Section 5 of this paper for more details). By contrast, the reduction from

binary reachability to plain reachability presented in this paper is sound and complete.

Our contributions are: (i) The first sound approach to the termination verification

of higher-order functional programs that is based on the transition invariant / binary

reachability technique. The approach is also complete relative to the completeness of

the backend reachability checker and the ranking function inference process. A notable

aspect of our approach is an inference of ranking functions over closure values via the

automatic inference of implicit parameter instantiations. (ii) A prototype implementa-

tion to show the effectiveness of the proposed approach.

The rest of the paper is organized as follows. We define the target functional lan-

guage of termination verification in Section 2. Section 3 formalizes our termination

verification method. Section 4 reports on a preliminary implementation and experiment

results. We compare our method with related work in Section 5 and conclude the paper

in Section 6. Appendix contains extra materials and proofs of the theorems.

2 Preliminaries

In this section, we introduce a higher-order functional languageL, which is the target of

our termination verification. Figure 2 shows the syntax of L. Here, x̃ is an abbreviation

for a (non-empty) variable sequence x1 x2 . . . xk. The meta-variables f , x, c and

op range over the sets of function symbols, variables, constants, and binary operators

respectively. We write |x̃| for the length of x̃. The arity of function fi, written arity(fi),
is the number of formal parameters, i.e., |x̃i| in the function definition fi x̃i = ei. We

assume that the set of constants includes (), true, false and (unbounded) integers,

and that the set of binary operators includes comparators: >, <, ≥, ≤, = and boolean



Programs P ::= {f1 x̃1 = e1, . . . , fn x̃n = en}

Expressions e ::= v | x | let x = e1 in e2 | e1 op e2 | e1 e2 | if e1 then e2 else e3 | ∗int

Values v ::= c | f | f ṽ (where |ṽ| < arity(f))

Fig. 2. Syntax of L

Eval. contextsE ::= [ ] | E op e | v op E | E e | v E | let x = E in e

| if E then e1 else e2

E [c1 op c2] →P E [[[op]](c1, c2)]

E [let x = v in e] →P E [[v/x] e]

E [if true then e1 else e2] →P E [e1]

E [if false then e1 else e2] →P E [e2]

n ∈ Z

E [∗int] →P E [n]

f x̃ = e ∈ P |x̃| = |ṽ|

E [f ṽ] →P E [[ṽ/x̃] e]

Fig. 3. Operational semantics of L.

operators: ∧,∨,⇒. We also assume that a program has a special one-arity function

named main that does not occur in the body of a function definition.

A program is a set of top-level function definitions; note that this does not lose

generality because any functional program can be transformed to this form via λ-lifting.

In the definition of the expression, ∗int evaluates to some integer in a non-deterministic

manner. Note that the non-deterministic boolean, ∗bool, can be defined as ∗int = 0.

The set of evaluation contexts and the reduction relation are given in Figure 3. Here,

[[op]] denotes the binary operation on constants denoted by op. Note that the evaluation

is call-by-value and non-deterministic (because of ∗int). We write →∗
P for the reflexive

and transitive closure of →P , and →+
P for the transitive closure of →P . When it is clear

from the context, we omit the subscript P from the relations.

Example 1. The following program fib chooses an integer n non-deterministically and

computes the n-th Fibonacci number.

{
fib n = if n < 2 then 1 else fib(n− 1) + fib(n− 2),

main () = fib ∗int

}

The following is a possible reduction sequence of the program:

main () →fib fib ∗int →fib fib(2) →∗
fib fib(1) + fib(0)

→∗
fib 1 + fib(0) →∗

fib 1 + 1 →∗
fib 2

For readability, we often write a program in the OCaml-like syntax as shown below:

let rec fib n = if n < 2 then 1 else fib (n-1) + fib (n-2)

let main () = fib ∗int



Example 2. The following program indirect is a simplified variant of the programP1

in Section 1, obtained by removing the then branch of app and moving the decrement

operation (i.e., x− 1) to inside g.





app f x u = f x u

id u = u

g x = if x ≤ 0 then id else app g (x− 1)
main () = g ∗int ()





The following is a possible reduction sequence of the program.

main () →∗ g 2 () →∗ app g 1 () →∗ g 1 ()
→∗ app g 0 () →∗ g 0 () →∗ id () →∗ ()

Note that, although g is applied to two arguments in the reduction above, arity(g) = 1
in our definition (because x is the only formal parameter in the definition of g).

We define termination as follows.

Definition 1. A program P is terminating, if there is no infinite reduction sequence

main () →P e1 →P e2 →P · · · .

Remark 1. The language L is untyped and therefore, a program evaluation may get

stuck. We consider a reduction sequence that ends with a stuck expression as terminat-

ing. Our approach is sound and complete even for untyped languages. But, our imple-

mentation currently supports only the typed subset because it delegates the reachability

checking to a higher-order program model checker for a typed language.

3 Termination Verification via Binary Reachability

This section describes our termination verification method. We give an informal overview

of the whole process in Subsection 3.1, and discuss each step in a more detail in the later

subsections.

3.1 Overview
main ()

g n app g (n− 1) ()

g (n− 1) app g (n− 2) ()

g (n− 2) ...

app g 0 ()

g 0 id ()

Fig. 4. A call tree of program indirect.

We use indirect from Example 2 as a

running example in this subsection. Our

termination verification method is based

on the observation that a functional pro-

gram is terminating if and only if each

of its call tree,5 which expresses how the

functions are called in an execution of

the program, is finite. Figure 4 shows a

call tree for indirect. Each node ex-

presses a fully applied function call (a

5 The call tree in this paper roughly corresponds to the dynamic call graph of [29].



Input Program P

Step 1: Program

Translation

(Subsection 3.3)

⌈P ⌉σ,f,Df

Step 2: Reachability

Analysis [16, 31]

Counterexample

Safe

Step 3: Ranking

Function & Implicit

Parameter Inference

(Subsection 3.4) [25, 3, 5, 33]

Candidate Df and σ

Fail

Rec(f) is disjunctively well-founded P may not terminate

Fig. 5. Overview of the termination verification process.

call of the form f ṽ with arity(f) = |ṽ|),
and an edge represents that the function call represented by the target node is made from

the function call of the source node. For example, the edge from “app g (n − 1) ()”
to “g (n − 1)” means that g (n − 1) is called during evaluation of app g (n − 1) ()
(i.e., app g (n − 1) () →+ E[g (n − 1)] for some evaluation context E). For every

(possibly infinite) reduction sequence, the corresponding call tree is finitely branching.

Therefore, by König’s lemma, to show that every call tree of the program is finite and

therefore the program is terminating, it is sufficient to show that no call tree has an in-

finite path from the root. The latter is equivalent to showing that for every function f ,

there is no infinite path f ṽ1 ⊲ f ṽ2 ⊲ f ṽ3 ⊲ · · · where f ṽ ⊲ g w̃ means that f ṽ is an

ancestor of g w̃ in the call tree. In the running example, the only non-trivial sequence

is app gn1 () ⊲ appgn2 () ⊲ app gn3 () ⊲ · · · and this sequence must be finite since

ni is decreasing and bounded below by 0. Thus, we may conclude that indirect is

terminating. We refer to Subsection 3.2 for the formal exposition of the above argument.

By the above argument, to show that the program terminates, it suffices to show

that, for every function f , the relation Rec(f) = {(ṽ, ṽ′) | f ṽ ⊲ f ṽ′} is well-founded,

or disjunctively well-founded6 [26] because RecP (f) is transitive. Thus, as mentioned

in Section 1, our termination verification method proceeds as follows.

(i) For each function f , guess a disjunctively well-founded relation Df that over-

approximates Rec(f), and reduce the termination verification problem to the so

called the binary reachability analysis problem of showing Rec(f) ⊆ Df .

6 A binary relation is disjunctively well-founded if it is a finite union of well-founded sets [26].



(ii) Use a program transformation to reduce the binary reachability problem to a plain

reachability problem; and

(iii) Solve the plain reachability problem by using an off-the-shelf software model

checker.

We express the disjunctively well-founded relation Df by using a set of ranking func-

tions, and gradually refine the set by using the technique of counterexample-guided

abstraction refinement [25, 3, 5, 33].

Figure 5 shows the overall flow of the process. We start with an empty set of ranking

functions (i.e., with Df = ∅), and apply a program transformation to reduce the binary

reachability analysis problem of deciding Rec(f) ⊆ Df to the plain reachability anal-

ysis problem of deciding if an assertion failure is reachable in the translated program

⌈P ⌉σ,f,Df
(Step 1 in Figure 5). Here, σ is a candidate implicit parameter instantiation

and is used for ranking functions over higher-order values (i.e., function closures). For

the purpose of the exposition, we focus on the case where the ranking functions are only

over the first-order values in Subsections 3.2 and 3.3, and defer implicit parameters and

ranking functions over higher-order values to Subsection 3.4. For simplicity, we write

⌈P ⌉f,Df
for ⌈P ⌉σ,f,Df

when implicit parameters are irrelevant to the discussion.

Informally, the idea of the program transformation is to pass around the argument

p̃v of an ancestor call as an extra argument, and assert in the body of f that p̃v and the

current argument ṽ are related by Df . For the running example, the definition of app

would be transformed as follows.

app s1 f s2 x s3 u = assert((s3,(f,x,u))∈ Dapp); ...

Here, s1, s2, and s3 are the extra arguments that carry the arguments of ancestor calls

to app. Because a function body does not evaluate until the function is fully applied,

only s3 is relevant and is checked with the current arguments (f, x, u) for the candidate

disjunctively well-founded relation Dapp. We use non-determinism to ensure that the

extra parameter can be bound to the argument of an arbitrary ancestor call, so that the

transformed program is assertion safe if and only if Rec(f)⊆Df . Because a function

can be called indirectly in a higher-order program, we pass extra arguments at all call

sites, including indirect calls, to account for all possible ancestor relations. Therefore,

for the running example, we also transform the functions g and id to take extra pa-

rameters (but only track and check the arguments of app). This makes our approach

sound and complete even in the presence of higher-order functions.7 In this manner,

the binary reachability problem is reduced to a plain reachability problem. We refer to

Subsection 3.3 for a more formal exposition.

We proceed to the plain reachability analysis (Step 2 in Figure 5), to check if the in-

serted assertion may fail. If the assertion cannot fail, then we conclude that Rec(f)⊆Df

holds (and if that is the case for every function f in the program, we conclude that the

program is terminating). Even if the program is terminating, however, an assertion fail-

ure may occur, because of a wrongly guessedDf . For our running example, in the initial

7 This is a crucial difference with the previous approaches to automated termination verification

for higher-order programs [30, 28, 29, 6, 12] that handle higher-order functions by approximat-

ing the call graph up front (e.g., via a control flow analysis), which can lose precision when

the calls depend on non-trivial safety conditions.



iteration, we set Dapp = ∅, and when the transformed program is given to a reachability

verifier (e.g., MoCHi [16]), the verifier would return a concrete counterexample to the

assertion safety. Suppose the following counterexample is returned.

main () →∗ app s1 g s2 0 (g, 1, ()) () →∗ fail

which corresponds to the following reduction sequence in the original program:

main () →∗ g 2 () →∗ app g 1 () →∗ app g 0 ()

We analyze the counterexample, and infer a new ranking function to refine Df

(Step 3 in Figure 5). For the running example, we look for a ranking function r such

that r(g, 1, ()) > r(g, 0, ()) ≥ 0 and update Dapp to Dapp ∪ {((pf, px, pu), (f, x, u)) |
r(pf, px, pu) > r(f, x, u) ≥ 0}. To find a ranking function, we adopt the existing

techniques for inferring ranking functions from counterexamples of first-order pro-

grams [25, 5].8 If no ranking function can be found, then we report that the program

may not be terminating. This may happen either because the program is indeed non-

terminating, or the method used for the ranking function synthesis is incomplete. We

refer to Subsection 3.4 for a more formal exposition on this step.

Upon refining Df , we go back to Step 1 and repeat the process. If the program is

terminating, and if the underlying reachability analysis tool and the ranking function

synthesis were complete, the loop eventually terminates and we conclude that the pro-

gram is terminating.

3.2 Termination and Binary Reachability

We discuss how termination verification is reduced to binary reachability analysis (to

show Rec(f) ⊆ Df ) more formally. First, we define the relations ⊲ and Rec(f).

Definition 2. The call relation ⊲P is the binary relation defined by:

⊲P := {(f ṽ, g w̃) | (main () →∗
P E1 [f ṽ]) ∧ (f ṽ →+

P E2 [g w̃])
∧arity(f) = |ṽ| ∧ arity(g) = |w̃|}

We often use the infix notation f ṽ ⊲P g w̃ for (f ṽ, g w̃) ∈ ⊲P .

Definition 3. RecP (f), the recursion relation of f in P , is the binary relation defined

by:

RecP (f) :=
{
(〈ṽ1〉, 〈ṽ2〉) |f ṽ1 ⊲P f ṽ2

}

When it is clear from contexts, we omit the subscript P . Note that the relations ⊲P and

RecP (f) are transitive.

Example 3. Recall program fib in Example 1. Rec(fib) is:

({(n, n− 1)|n > 1} ∪ {(n, n− 2) | n > 2})+ = {(m,n) | m > n ≥ 0}

8 To infer a ranking relation over function closure values, we use implicit parameters and in-

fer sufficient instantiations for them to represent the closures. This is done by adopting the

counterexample-guided technique from the previous work [33] (cf. Subsection 3.4).



As shown in the example below, Rec(f) may be non-empty even if f is not recur-

sively defined, and Rec(f) may be empty even if f is recursively defined.

Example 4. Recall the program in Example 2. The recursion relations are:

Rec(app) = {(〈g,m, ()〉, 〈g, n, ()〉) | m > n ≥ 0}

Rec(id) = Rec(g) = ∅

Note that g is defined recursively but does not cause a recursive call to g. Therefore,

the relation Rec(g) is empty. On the other hand, app is not recursively defined but

Rec(app) 6= ∅. This shows that we must check the disjunctive well-foundedness of

Rec(f) for each function f , regardless of whether f is recursively defined or not.

Next, we show the termination verification problem can be reduced soundly and

completely to the problem of showing that Rec(f) is disjunctively well-founded for

every f .

We state the soundness and the completeness of the reduction.

Theorem 1 (Soundness). A program P is terminating if RecP (f) is disjunctively well-

founded for every f defined in P .

Theorem 2 (Completeness). If a program P is terminating, then RecP (f) is disjunc-

tively well-founded for every f defined in P .

3.3 From Binary Reachability to Plain Reachability

This subsection presents the reduction from the binary reachability problem of deciding

RecP (f) ⊆ Df to a plain reachability problem. As remarked in Subsection 3.1, we

transform P to the program ⌈P ⌉f,Df
that simulates the program P and asserts the

property (ṽ′, ṽ) ∈ Df whenever a recursive call relation f ṽ′ ⊲P f ṽ is detected. Then,

RecP (f) ⊆ Df holds if and only if an assertion in ⌈P ⌉f,Df
may fail.

The target language of the program transformation is an extension of L with tu-

ples 〈e1, . . . , ek〉, assertions assert(e1); e2, and a special value ⊥. The semantics of

assertions is defined by:

E[assert(true); e] →P E[e] E[assert(false); e] →P fail

where the evaluation contexts are extended accordingly: E ::= · · · | assert(E); e.

The special value ⊥ is used in place of the argument of an ancestor call, when there is

no tracked ancestor call; see examples below.

Before we give the formal definition of the transformation, ⌈·⌉f,Df
, we informally

describe the idea. The program ⌈P ⌉f,Df
is obtained by adding extra function arguments

that represent the arguments of past calls to f .

First we consider the simple case where the program only contains first-order func-

tions. For example, let P be the Fibonacci program from Example 1. Let Dfib =
{(pn, n) | pn > n ≥ 0}. Then, ⌈P ⌉fib,Dfib

would be as follows.



1: let rec fib pn n =

2: assert(pn>n && n≥0);
3: let pn’ = if ∗bool then pn else n in

4: if n < 2 then 1 else fib pn’ (n-1) + fib pn’ (n-2)

5: let main () = fib ⊥ ∗int

We have added the formal argument pn that represents the argument of an ancestor call

(i.e., a call that corresponds to an ancestor node in the call tree) for fib, and inserted the

assertion that checks (pn,n) ∈ Dfib (lines 1-2). Accordingly, we have also inserted an

extra parameter to each function call (calls in line 4). In line 3, we non-deterministically

“update” the tracked argument to the current argument in order to compare the argument

of the current call with a future call of fib. The extra parameter is initially set to ⊥,

to indicate that there is no ancestor call (line 5). We assume that > is extended so that

⊥ > n holds for every n. For the two recursive calls to fib in the definition of fib,

pn or n is passed in a non-deterministic manner. Below is a possible reduction of the

transformed program.

main () →∗ fib ⊥ 2 →∗ assert(⊥ > 2&&2 ≥ 0); · · ·
→∗ fib 2 1 + fib 2 0
→∗ (assert(2 > 1&&1 ≥ 0); · · · ) + fib 2 0
→∗ 1 + fib 2 0
→∗ 1 + (assert(2 > 0&&0 ≥ 0); · · · )
→∗ 1 + 1 →∗ 2

The subexpressions fib 2 1 and fib 2 0 capture the fact that fib 1 and fib 0 are

called from fib 2 in the original program. It is easy to see that RecP (fib) ⊆ Dfib if

and only if ⌈P ⌉fib,Dfib
does not cause an assertion failure.

The transformation is more subtle for higher-order programs with partial appli-

cations and indirect calls. For example, let P be the program indirect from Ex-

ample 2 and 4. Suppose that we wish to show RecP (app) ⊆ Dapp where Dapp =
{((ph, pv, pu), (h, v, u)) | pv > v ≥ 0}. Then, ⌈P ⌉app,Dapp

would be as follows.

1: let app h v (ph,pv,pu) u =

2: assert(pv>v && v≥0);
3: let (ph,pv,pu) = if ∗bool then (ph,pv,pu) else (h,v,u)

4: in

5: h (ph,pv,pu) v (ph,pv,pu) u

6: let id (ph,pv,pu) u = u

7: let rec g (ph,pv,pu) x =

8: if x≤0 then id

9: else app (ph,pv,pu) g (ph,pv,pu) (x-1)

10: let main () = g ⊥̃ ∗int ⊥̃ ()

Here, ⊥̃ denotes (⊥,⊥,⊥). As before, the extra parameter (ph,pv,pu) is inserted

to represent the arguments of an ancestor call to app (line 1). Note that the extra pa-

rameter for this program takes a tuple of values, so that all three arguments of app

can be tracked (i.e., h, v, and u). As before, the assertion is inserted at the beginning



of the body of app to check ((ph, pv, pu), (h, v, u)) ∈ Dfib (line 2), and we update

the tracked past arguments with the current arguments non-deterministically, in order

to compare the arguments of the current call with a future call of the function (line 3).

To soundly and completely track the extra parameters through partial applications

and indirect calls, we pass the extra parameter at every function application site (lines

5, 9, and 10). To be able to do this, note that we have also transformed the definitions

of id and g to take the extra parameters and pass them at the applications that occur

in their body (lines 6 and 7), and also transformed the definition of app to take an

extra parameter argument just before h and v as well as just before u, even though

app only checks the well-foundedness against the one passed just before u. (Note that

in the definition of app is an unused argument.) This is needed, because, in general,

we cannot statically decide which (indirect) function call is a fully applied function

call, nor which is a call to the target function (i.e., app in the example). We note that

it is possible to soundly eliminate some of the redundancy via a static analysis (see

Example 5 below), but it is in general impossible to completely decide a priori which

function is called in what context. In effect, the idea of our transformation is to delegate

such tasks to the backend reachability checker.

Example 5. By using useless code elimination [34, 13], we can simplify the above pro-

gram to:

let app h v (ph,pv,pu) u =

assert(pv>v && v≥0);
let (ph,pv,pu) = if ∗bool then (ph,pv,pu) else (h,v,u) in

h v (ph,pv,pu) u

let id (ph,pv,pu) u = u

let rec g x = if x≤0 then id else app g (x-1)

let main () = g ∗int ⊥̃ ()

Below is a possible reduction of ⌈P ⌉app,Dapp
. (For simplicity, we use a reduction

sequence from the optimized version in Example 5.)

main () −→∗ g 2 ⊥̃ () −→∗ appg 1 ⊥̃ ()
−→∗ g 1 (g, 1, ()) () −→∗ app g 0 (g, 1, ()) ()

Note that the reached state appg 0 (g, 1, ()) () captures the recursion relation appg 1 ()⊲P
app g 0 () of the original program P .

The Formal Definition of ⌈·⌉f,D

We now define the transformation formally. ⌈P ⌉f,D is obtained by transforming each

function definition:

⌈P ⌉f,D = {⌈g x̃ = e⌉f,D | g x̃ = e ∈ P}



where the function definition transformation is defined as follows.

⌈g x1 · · · xk = e⌉f,D =



g s1 x1 · · · sk xk =
let s = check&upd(D, sk, 〈x1, . . . , xk〉) in ⌈e⌉s

if g = f
g s1 x1 · · · sk xk = ⌈e⌉sk if g 6= f

Note that an extra parameter si is added before every original parameter xi of a function.

Therefore, as opposed to the informal examples given above, the main function in the

target program now takes two arguments, the first of which is always instantiated to ⊥.

The code that checks the candidate well-foundedness and non-deterministically updates

the arguments is inserted at the beginning of the body of the target function f . Here,

check&upd(D, sk, 〈x1, . . . , xk〉) denotes the expression

assert(D#(sk, 〈x1, . . . , xk〉); if ∗bool then sk else 〈x1, . . . , xk〉.

where the relation D# is the extension of D defined by:

D# = {(⊥̃, 〈v1, . . . , vk〉) | v1, . . . , vk are values}∪
{(〈v′1, . . . , v

′
k〉, 〈v1, . . . , vk〉) | (〈⌊v

′
1⌋, . . . , ⌊v

′
k⌋〉, 〈⌊v1⌋, . . . , ⌊vk⌋〉) ∈ D}

Here, ⌊v⌋ is the value obtained by removing all the extra arguments from partial appli-

cations; see below for the definition. We assume that D# is represented by a formula of

some logic. (In the implementation, we use the first-order logic with linear arithmetic.)

Note that the body e of each function definition is transformed by ⌈e⌉s where s is the

extra parameter passed just before the last argument (non-deterministically updated to

the current arguments in the case of the target function). The expression transformation

⌈e⌉s passes s at each application site in e, and is formally defined as follows.

⌈c⌉s = c ⌈∗int⌉s = ∗int ⌈f⌉s = f ⌈x⌉s = x
⌈let x = e1 in e2⌉s = let x = ⌈e1⌉s in ⌈e2⌉s
⌈e1 op e2⌉s = ⌈e1⌉s op ⌈e2⌉s
⌈if e1 then e2 else e3⌉s = if ⌈e1⌉sthen ⌈e2⌉selse ⌈e3⌉s
⌈e1 e2⌉s = ⌈e1⌉s s ⌈e2⌉s

The operation ⌊e⌋ for removing extra arguments (used in the definition of D#) is

defined as follows.

⌊c⌋ = c ⌊∗int⌋ = ∗int ⌊f⌋ = f ⌊x⌋ = x
⌊let x = e1 in e2⌋ = let x = ⌊e1⌋ in ⌊e2⌋
⌊e1 op e2⌋ = ⌊e1⌋ op ⌊e2⌋ ⌊e1 s e2⌋ = ⌊e1⌋ ⌊e2⌋
⌊if e1 then e2 else e3⌋ = if ⌊e1⌋then ⌊e2⌋else ⌊e3⌋

Note that ⌊⌈e⌉s⌋ = e.

We prove the soundness and the completeness of the transformation. The follow-

ing theorem states the soundness of the transformation. It says that the target program

reaches an assertion failure when the recursion relation is not a subset of D.



Theorem 3 (Soundness of ⌈·⌉f,Df
).

Suppose that main () →∗
P E1[f v1 · · · vk], f v1 · · · vk →+

P E2[f w1 · · · wk], and

(〈v1, . . . , vk〉, 〈w1, . . . , wk〉) 6∈ D. Then, main⊥ () →∗
⌈P⌉f,D

fail.

The theorem below states the completeness. It says that the target program reaches

an assertion failure only when the recursion relation is not a subset of D.

Theorem 4 (Completeness of ⌈·⌉f,Df
).

If main⊥ () →∗
⌈P⌉f,D

fail, then main () →∗
P E1[f ṽ] and f ṽ →+

P E2[f w̃], and

(〈ṽ〉, 〈w̃〉) 6∈ D for some E1, E2, ṽ, w̃.

3.4 Ranking Function Inference

This subsection details how we refine the candidate disjunctively well-founded relation

Df . As remarked in Subsection 3.1, we actually infer both Df and the implicit param-

eter instantiation σ. The implicit parameters are used to assert and check well-founded

relation over function closure values.

We first describe the case where only Df is inferred. (This happens, for example,

when f is first-order and does not take function closures as arguments.) Recall that the

inference is invoked when Rec(f) 6⊆ Df (cf. Step 3 of Figure 5), and in such a case,

the reachability checker returns a counterexample of the form:

main () →∗ E[f s1 v1 s2 v2 · · · (v′1, . . . , v
′
n) vn]

→ assert((v′1, . . . , v
′
n), (v1, . . . , vn)) ∈ Df ); . . . → fail

As remarked in Subsection 3.3, this implies that f v′1 · · · v
′
n ⊲ f v1 · · · vn, and we have

that ((v′1, . . . , v
′
n), (v1, . . . , vn)) ∈ Rec(f) and ((v′1, . . . , v

′
n), (v1, . . . , vn)) 6∈ Df .

The goal of ranking function inference is to obtain a refined disjunctively well-

founded relation D′
f such that

Df ∪ {((v′1, . . . , v
′
n), (v1, . . . , vn))} ⊆ D′

f .

To this end, we infer a new ranking function r(x1, . . . , xn) such that r(v′1, . . . , v
′
n) >

r(v1, . . . , vn) ≥ 0 and let D′
f = Df ∪ {(x̃′, x̃) | r(x̃′) > r(x̃) ≥ 0}. We adopt the

constraint-based technique [25, 5] to infer r(x̃).
We overview the inference process. We prepare a ranking function template c0 +

c1x1 + · · ·+ cnxn. Here, ci’s are fresh variables, serving as unknowns. Then, we solve

for the assignments to ci’s that satisfy the constraint

∀x̃.[[π]] ⇒ c0 + c1v
′
1 + · · ·+ cnv

′
n > c0 + c1v1 + · · ·+ cnvn ≥ 0

where x̃ are the free variables in [[π]] and v1, . . . , vn, v
′
1, . . . , v

′
n. Here, [[π]] is the strongest

postcondition of the given counterexample π.9 Finally, we set r(x1, . . . , xn) = α0 +
α1x1 + · · ·+ αnxn where each αi is the assignment obtained for ci.

Next, we extend the above process with implicit parameters to infer ranking func-

tions over higher-order values. We illustrate the need for ranking functions over higher-

order values with the following program indirectHO.

9 More precisely, we construct a corresponding straightline program from the counterexample,

and take its strongest postcondition (cf. [16, 33] and Appendix E).



let app h v = h () v

let id x = x

let rec g x u =

if x <= 0 then id else app (g (x-1))

let main () = g ∗int () ()

The program is similar to indirect from Example 2 and 4, except that app no longer

takes an integer argument and instead has the “decreasing” integer value captured inside

the function closure passed as h. To show that this program is terminating, we need

to show that the recursion relation for app is disjunctively well-founded. However,

because app only takes function-type arguments (besides unit), ranking functions over

first-order values are insufficient for this.

To this end, we adopt the idea from the previous work [33] and systematically

add an integer-type implicit parameter just before each function-type parameter.10 For

indirectHO, we add an implicit parameter h IMPARAM before h so that the program

is now the following. (The added parts are underlined.)

let app h IMPARAM h () = h () ()

let id x = x

let rec g x () =

if x <= 0 then id else app σ(ℓ) (g (x-1))

let main () = g ∗int () ()

Here, σ is the candidate implicit parameter instantiation that maps each instantiation

site ℓ to an arithmetic expression over the variables bound in the context of ℓ. Formally,

an instantiation site is at an application of a function-type argument, and is syntactically

determined (i.e., between e1 e2 where e2 is function-type). Clearly, the addition of

implicit parameters and their instantiations do not affect the termination of the program,

and so we may check the termination of the program with the implicit parameters added

to check the termination of the original. The verification process starts by initializing

the candidate instantiations to some arithmetic expression (e.g., 0), and refine them

iteratively via a counterexample analysis (cf. Figure 5).

As remarked above, in the presence of implicit parameters, we infer both σ and

Df when given a counterexample. To this end, the above inference process is extended

as follows. We prepare templates for the instantiation expressions in addition to the

templates for the ranking functions. Then, when generating the constraints, we use the

template instantiation expressions in the strongest postcondition of the counterexample,

and solve for both the unknowns in the ranking function templates and the instantiation

expression templates.

More formally, let Π = {π1, . . . , πm} be the set of counterexamples we have seen

so far for f . We prepare a template instantiation map ∆ that maps each ℓ to an expres-

sion of the form c0 + c1x1 + · · · + cnxn where ci’s are fresh unknowns and xi’s are

the integer-type variables that are bound in the context of ℓ (which may include implicit

10 Implicit parameters are called “extra parameters” in [33]. We call them implicit parameters

here to avoid confusion with the extra parameters in this paper which are used for a different

purpose.



program ord time program ord time program ord time

Ackermann 1 5.85 alias partial 1 0.32 churchNum 4 3.13

Fibonacci 1 0.15 quicksort 2 timeout CE-Jones Bohr 4 0.71

McCarthy91 1 4.95 indirectIntro 2 4.76 up down 2 0.65

loop2 1 0.61 indirect 2 1.36 map 2 1.59

append 1 0.14 indirectHO 2 7.75 toChurch 2 0.69

zip 1 0.15 CE-0CFA 2 0.14 x plus 2ˆn 2 2.02

binomial 1 0.70 CE-1CFA 2 0.24 foldr 2 1.19

Table 1. Experiment results.

parameters). Then, we form the following constraint
∧

π∈Π

∀x̃.[[π∆]] ⇒ cπ,0+cπ,1v
′
π,1+· · ·+cπ,nv

′
π,n > cπ,0+cπ,1vπ,1+· · ·+cπ,nvπ,n ≥ 0

where cπ,i’s are fresh unknowns, and x̃ are the free non-unknown variables in [[π∆]]
and v1, . . . , vn, v

′
1, . . . , v

′
n. (Here, we assume that the counterexamples π explicitly

use the instantiation sites ℓ as expressions.) We solve for the unknowns that satisfy

the constraint to obtain implicit parameter instantiations and ranking functions that

refute the counterexample. We obtain the new candidate disjunctive well-founded re-

lation from the ranking functions: D =
⋃

π∈Π{(x̃′, x̃) | rπ(x̃′) > rπ(x̃) ≥ 0} where

rπ(x̃) = απ,0 + απ,1x1 + · · · + απ,nxn and each απ,i is the obtained assignment

for cπ,i. And, we substitute the assignments to the unknowns in ∆ to obtain the new

candidate implicit parameter instantiation. Appendix E contains details of the inference

process applied to indirectHO.

4 Implementation and Experiments

We have implemented a prototype of the termination verifier for a subset of OCaml.

We use MoCHi [16] as the backend reachability checker, and Z3 [22] as a constraint

solver for ranking function inference. As an optimization, we have extended the ranking

function inference described in Section 3.4 to also infer lexicographic linear ranking

functions [5] whenever possible. Appendix F contains details of the lexicographic linear

ranking function inference process.

We have tested our tool on various termination verification benchmark programs in

literature, taken mostly from the previous work on termination verification of higher-

order programs, as well as some synthetic but non-trivial examples. We ran the exper-

iment on a machine with 3.20GHz CPU and 16GB of memory, with timeout of 600

seconds. The web interface of the verification tool and the programs used in the exper-

iments are available online [17].

Table 1 summarizes the experiment results. The column “program” shows the names

of programs, and the column “ord” shows the order of the program (where order-1 func-

tions take only base type values, order-2 functions may take order-1 functions as argu-

ments, etc., and the order of a program is the maximum order of the functions in the

program). The column “time” shows the running time in seconds.



We briefly describe the benchmark programs. The seven programs in the left column

and alias partial are first-order (i.e., order-1) programs. The programs append,

zip, and binomial are from [2]. Ackermann is the Ackermann’s function, and is

also used as examples in [2, 35]. McCarthy91 is the McCarthy’s 91 function (used as

a benchmark program in, e.g., [18]11). Fibonacci is the Fibonacci number function

from Example 1. The program alias partial is from Section 8 of [18] and is given

as an example on which their approach fails.

The program quicksort is from [35],12 and is a second-order program where

the list sorting function is parametrized by the “compare” function. We check the ter-

mination of a program that passes the sorting function a terminating compare function

and an arbitrary list. (Our tool currently does not directly support lists, and so a list

is represented by the integer denoting its length.) Our tool fails to verify the program

within the time limit due to the underlying reachability checker MoCHi failing to verify

the necessary assertion safety. This is not a fundamental limitation with our termina-

tion verification approach, and we expect further advances in reachability verification

to allow our approach to verify instances like quicksort.

The rest of the programs are higher-order programs whose termination depends

non-trivially on the functions passed as the arguments, and precise reasoning about

the function arguments is required for proving termination. They are mostly from the

examples and benchmarks in [12, 28, 29]. Many of these are difficult examples that the

previous approaches cannot verify. (We have selected the ones given as examples where

their approaches fail). We refer to Appendix G for further description of these programs.

As seen in Table 1, the benchmark results are promising and show that our tool is able to

automatically verify the difficult instances quickly, except quicksort whose reason

for the failure is elaborated above.

5 Related Work

There have been three major approaches to automated termination verification for first-

order programs: transition invariants [26, 3, 4], size-change termination [19], and term

rewriting [7] (see also [32, 8] for relationships between those approaches). The ap-

proaches have recently been extended to the termination verification of higher-order

programs [18, 30, 28, 29, 6, 12]. Below, we compare them with our approach.

5.1 Transition Invariants

Closest to our work is the work by Ledesma-Garza and Rybalchenko [18]. Similar

to our work, they propose a program transformation to reduce the transition invariant

verification problem (i.e., binary reachability analysis) to a plain reachability problem

via a program transformation. Unfortunately, as also admitted in their paper (Section

8 of [18]), their approach has a limited applicability to the verification of higher-order

11 [18] is not fully automated and requires the user to provide the sufficient ranking functions as

well as the predicates to be used for reachability checking.
12 [35] is not automated.



programs because it does not correctly handle indirect calls and is actually unsound.

For example, their approach would incorrectly report the program P0 from Section 1

to be terminating. Moreover, their approach is not fully automated and requires a suf-

ficient well-foundedness relation to be provided manually, and it also cannot handle

well-foundedness relations over function closure values.

By contrast, we have proposed the first sound and (relatively) complete approach

to termination verification of higher-order programs via binary reachability analysis.

A key idea of our approach is the novel program transformation that precisely tracks

the call-tree ancestor’s arguments values through the higher-order control flow without

a priori approximation. We have also presented a method to infer well-foundedness

relations (including those over function closure values) from counterexamples returned

by a higher-order program verifier, thus realizing a fully automated verification.

5.2 Size-Change Analysis

The size-change approach [19] to termination verification involves the following two

steps: (1) an analysis of the program to construct a size-change graph, and (2) an anal-

ysis of the obtained graph to decide if the program is terminating. For functional pro-

grams, the size-change graph is a graph comprising functions in the program where the

edges express the changes in the values that may be passed as arguments. Step (1) con-

structs the graph by statically approximating the possible calls that the program would

make in its actual execution.

To apply size-change termination verification to higher-order programs, a control

flow analysis (CFA) is employed to statically approximate the possible call relations as

a call graph and construct a sound size-change graph from the call graph [30, 28, 29, 12].

Therefore, the approach involves a priori approximation of the program, and can lead

to loss in a precision when a precise graph cannot be constructed by the static analysis.

For example, the approach may fail on cases where a non-terminating call depends on

a safety property (recall the simple example from Section 1 where a non-terminating

function is called if and only if the condition p(x) is met). By contrast, our approach

suffers no a priori loss in precision and is sound and complete.

Like our approach, the size-change approach to higher-order programs [30, 28, 29,

12] can prove termination of programs that require well-foundedness relation over func-

tion closure values. For example, Jones and Bohr [12] and Sereni [28] order closure ar-

guments by using the subtree relation on their tree representations. By contrast, we have

presented a generic approach that uses implicit parameters and counterexample analy-

sis to infer the appropriate instantiations for the implicit parameters. Our approach is

more general in the sense that it is not fixed to one pattern of closure information to be

used for the well-foundedness relation. For example, the subtree relation used in [12,

28] can be expressed by inferring instantiations that encode the depth of the closures,

and our prototype implementation automatically verifies examples in their paper that

require such information (cf. Section 4 and Appendix G).

On the other hand, we employ counterexample analysis and constraint-based in-

ference to automatically infer the instantiations, and so the approach of Jones, Bohr,

and Sereni that fixes the closure information to a pre-determined pattern may be more

efficient on instances that are known to be verifiable with such information.



5.3 Term Rewriting

Similar to the size-change approach, the application of termination verification tech-

niques for term rewriting systems to higher-order programs is done in a two-step pro-

cess [6]. There, in the first step, a static analysis is employed to construct a term rewrit-

ing system that soundly approximates the given program such that the program is termi-

nating if the constructed rewriting system is terminating. Then, the second step applies

a termination verifier for term rewriting systems [7] to verify termination.

As with the size-change approach, this two-step approach can introduce a loss in

precision because of the approximation in the first step. For example, Giesl et al. [6]

show a simple program on which their approach fails because of this limitation (Exam-

ple 4.12 in [6]).

6 Conclusion

We have presented a new automated approach to termination verification of higher-

order functional programs. In stark contrast to the previous approaches, our approach

is sound and complete relative to the soundness and completeness of the underlying

reachability analysis and ranking function inference. Our approach is the first sound

binary reachability analysis based approach to the termination verification of higher-

order programs. The key features of our approach are the novel program transformation

that correctly tracks the call-tree ancestor’s arguments through the higher-order con-

trol flow, and the inference method for ranking functions over higher-order values via

implicit parameter instantiation inference.
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Appendix

A Proof of Theorem 1

We first prove the following lemma.

Lemma 1. If RecP (f) is disjunctively well-founded for every function f defined in P ,

then every sequence f1 ṽ1 ⊲P f2 ṽ2 ⊲P . . . ⊲P fn ṽn ⊲P . . . is finite.

Proof. Suppose that RecP (f) is disjunctively well-founded for every f , but that there is

an infinite sequence f1 ṽ1⊲P f2 ṽ2⊲P . . .⊲P fn ṽn⊲P . . .. Because the number of function

symbols fi is finite, there must be f such that fi = f for infinitely many i’s. But, this

contradicts with the assumption that RecP (f) is disjunctively well-founded and the

fact that RecP (f) is transitive. (Recall that a transitive relation that is disjunctively

well-founded is also well-founded.) ⊓⊔

We are now ready to prove the soundness of the reduction.

Proof. [Theorem 1] Suppose that RecP (f) is disjunctively well-founded for every f ,

but that there were an infinite reduction sequence π:

main ()(= e0) →P e1 →P e2 →P · · ·

We write (f ṽ, i)⊲πP (g w̃, j) if, for someE1 andE2, ei = E1[f ṽ] and ej = E1[E2[g w̃]]
with j > i ≥ 0, arity(f) = |ṽ| and arity(g) = |w̃| and if E1 is not reduced in the

sub-sequence ei →∗
P ej of π. By definition, ⊲πP is a restriction of ⊲P in the sense that

(f ṽ, i) ⊲πP (g w̃, j) implies f ṽ ⊲P g w̃.

Define Tπ as the tree consisting of the set Vπ of nodes and the set Eπ of edges given

by:

Vπ = {(f ṽ, i) | arity(f) = |ṽ| and ei = E [f ṽ]}
Eπ = {((f ṽ, i), (g w̃, j)) | (f ṽ, i) ⊲πP (g w̃, j)

∧¬∃k, h, z̃.((f ṽ, i) ⊲πP (h z̃, k) ∧ k < j)}

We note that this is the formal definition of the call tree mentioned in Subsection 3.1.

By the assumption that π is infinite, function definitions must be unfolded infinitely

many times; thus, the tree Tπ must be infinite. However, Tπ is finitely branching (to

observe this, notice that if ((f ṽ, i), (g w̃, j)) ∈ Eπ , then (g w̃, j) must be called from

the body of f obtained by reducing f ṽ), and every path from the root in Tπ must be

finite, by Lemma 1 and the fact that ⊲πP is a restriction of ⊲P . By König’s lemma, Tπ

must be finite, hence a contradiction. ⊓⊔

B Proof of Theorem 2

It suffices to show that RecP (f) is well-founded if P is terminating. We prove the

contraposition. Suppose that RecP (f) is not well-founded. Then there is an infinite

sequence f ṽ0 ⊲P f ṽ1 ⊲P f ṽ2 ⊲P . . .. By the definition of ⊲P , we have f ṽi →+
P

Ei [f ṽi+1] for every i ≥ 0, and main () →∗
P E0 [f ṽ1]. Therefore, we have an infinite

reduction sequence:

main () →∗
P E0 [f ṽ1] →

+
P E0 [E1 [f ṽ2]] →

+
P E0 [E1 [E2 [f ṽ3]]] →

+
P · · ·

Thus, P is not terminating.



C Proof of Theorem 3

We define the relation ∼s between the source expressions and the target expressions as

follows,

v is a value

⌊v⌋ ∼s v

x ∼s x

∗int ∼s ∗int

e1 ∼s e
′
1 e2 ∼s e

′
2

let x = e1 in e2 ∼s let x = e′1 in e′2

e1 ∼s e
′
1 e2 ∼s e

′
2

e1 op e2 ∼s e
′
1 op e′2

e1 ∼s e
′
1 e2 ∼s e

′
2 e3 ∼s e

′
3

if e1 then e2 else e3 ∼s if e′1 then e′2 else e′3

e1 ∼s e
′
1 e2 ∼s e

′
2

e1 e2 ∼s e
′
1 s e

′
2

Let D0 be the relation that relates all the elements, that is, D0(〈ṽ〉, 〈ṽ
′〉) for all

values ṽ and ṽ′.

Lemma 2. Let P be a program, e1 be a closed expression, and s be ⊥ or a tuple of

values 〈v〉. If e1 →P e2 and e1 ∼s e′1, then e′1 →∗
⌈P⌉f,D0

e′2 for some e′2 such that

e2 ∼s e
′
2.

Proof. This follows by case analysis on the rule used for e →P e′. The only non-trivial

case is when

e1 ≡ E[f ṽ] →P E[[ṽ/x̃]e0] ≡ e2

where f x̃ = e0. By the assumption e1 ∼s e′1, e′1 is of the form E′[f s1 v
′
1 · · · sk v′k]

with sk = s, E ∼s E
′ and ṽ ∼s v

′
1 · · · v

′
k (where ∼s is extended to contexts in a natural

way). Thus, we have:

e1 ≡ E′[f s1 v
′
1 · · · sk v′k]

→∗ E′[let s0 = check&upd(D#
0 , s, 〈ṽ′〉) in

[v′1/x1, . . . , v
′
k/xk]⌈e0⌉s0 ]

→∗ E′[let s0 = s in [v′1/x1, . . . , v
′
k/xk]⌈e0⌉s0 ]

→∗ E′[[v′1/x1, . . . , v
′
k/xk]⌈e0⌉s]

and e2 ∼s E
′[[v′1/x1, . . . , v

′
k/xk]⌈e0⌉s] as required. ⊓⊔



The following lemma states that every element of the recursion relation may occur

in a reduction sequence of the target program.

Lemma 3. Suppose main () →∗
P E1[f v1 · · · vk] and f v1 · · · vk →+

P E2[f w1 · · · wk].
Then,

main⊥ () →∗
⌈P⌉f,D0

E[f s1 w
′
1 · · · sk w

′
k]

for some E,s1, . . . , sk and w′
1, . . . , w

′
k such that sk = 〈v′1, . . . , v

′
k〉 with ⌊v′i⌋ = vi and

⌊w′
i⌋ = wi for i ∈ {1, . . . , k}.

Proof. By the assumption main () →∗
P E1[f v1 · · · vk] and Lemma 2, we have

main⊥ () →∗
⌈P⌉f,D0

e1

for some e1 such that E1[f v1 · · · vk] ∼⊥ e1. Thus, e1 must be of the formE′
1[f s1 v

′
1 · · · ⊥ v′k]

where ⌊v′i⌋ = vi for every i ∈ {1, . . . , k}. By the assumption f v1 · · · vk →+
P E2[f w1 · · · wk],

we have

f v1 · · · vk →P [v1/x1, . . . , vk/xk]e0 →∗
P E2[f w1 · · · wk]

where f x1 · · · xk = e0 ∈ P . The expression f s1 v
′
1 · · · ⊥ v′k is reduced as follows:

f s1 v
′
1 · · · ⊥ v′k

→⌈P⌉f,D0
let s = check&upd(D#

0 ,⊥, 〈v′1, . . . , v
′
k〉) in

[v′1/x1, . . . , v
′
k/xk]⌈e0⌉s

→∗
⌈P⌉f,D0

[v′1/x1, . . . , v
′
k/xk]⌈e0⌉〈v′

1,...,v
′

k
〉

Let ṽ′ = 〈v′1, . . . , v
′
k〉. By

[v1/x1, . . . , vk/xk]e0 →∗
P E2[f w1 · · · wk]

and

[v1/x1, . . . , vk/xk]e0 ∼
ṽ′ [v

′
1/x1, . . . , v

′
k/xk]⌈e0⌉ṽ′ ,

we have:

[v′1/x1, . . . , v
′
k/xk]⌈e0⌉ṽ′ →

∗
⌈P⌉f,D0

e2

for some e2 such that E2[f w1 · · · wk] ∼ṽ′ e2. Because arity(f) = k, e2 must be of

the form E′
2[f s1 w

′
1 · · · ṽ′ w′

k], and the required conditions are satisfied. ⊓⊔

Proof. [Theorem 3] By the assumption and Lemma 3, either we have

main⊥ () →∗
⌈P⌉f,D

E[f s1 w
′
1 · · · sk w′

k] for some E,s1, . . . , sk and w′
1, . . . , w

′
k such

that sk = 〈v′1, . . . , v
′
k〉 with ⌊v′i⌋ = vi and ⌊w′

i⌋ = wi for i ∈ {1, . . . , k}, or main⊥ () →∗
⌈P⌉f,D

fail (because →∗
⌈P⌉f,D

is the same except that the assertions are stronger). In the for-

mer case, by the assumption

(〈v1, . . . , vk〉, 〈w1, . . . , wk〉) 6∈ D,

we have main⊥ () →∗
⌈P⌉f,D

fail as required. ⊓⊔



D Proof of Theorem 4

Lemma 4. Let P be a program, e1 be a closed expression, and s be ⊥ or a tuple

of values 〈v〉. If e′1 →+
⌈P⌉f,D0

e′2, then ⌊e′1⌋ →P e2 and either e′2 →∗
⌈P⌉f,D0

e′′2 or

e′′2 →∗
⌈P⌉f,D0

e′2 for some e2 and e′′2 such that e2 = ⌊e′′2⌋.

Proof. This follows by straightforward induction on the case analysis on the rule used

for the first reduction step of e′1 →+
⌈P⌉f,D0

e′2. The only non-trivial case is when

e′1 ≡ E′[f s1 v
′
1 · · · sk v

′
k] →⌈P⌉f,D0

let s = check&upd(D#
0 , sk, 〈v′1, . . . , v

′
k〉) in

[v′1/x1, . . . , v
′
k/xk]⌈e0⌉s ≡ e′2

with f x1 · · · xk = e0 ∈ P . In this case, we have e1 ≡ E[f ṽ] with E = ⌊E′⌋
and ⌊ṽ⌋ = ⌊ṽ′⌋. The required result holds for e2 = [v1/x1, . . . , vk/xk]e0 and e′′2 =
E′[[v′1/x1, . . . , v

′
k/xk]⌈e0⌉s′ ] where s′ is sk or 〈v′1, . . . , v

′
k〉. ⊓⊔

Lemma 5. If main⊥ () →∗
⌈P⌉f,D0

E[g s1 w
′
1 · · · sℓ w′

ℓ] with sℓ = 〈v′1, . . . , v
′
k〉 and

arity(g) = ℓ, then main () →∗
P E1[f v1 · · · vk] and f v1 · · · vk →+

P E2[g w1 · · · wℓ],
for some E1, E2, ṽ, w̃ such that ⌊v′i⌋ = vi for i ∈ {1, . . . , k}. and ⌊w′

i⌋ = wi for

i ∈ {1, . . . , ℓ}.

Proof. Suppose main⊥ () →∗
⌈P⌉f,D0

E[g s1 w
′
1 · · · sk w′

ℓ] and sℓ = 〈v′1, . . . , v
′
k〉.

Then, by the definition of the transformation, it must be the case that main⊥ () →∗
⌈P⌉f,D0

E′
1[f s′1 v

′
1 · · · s′k v

′
k] and f s′1 v

′
1 · · · s′k v

′
k →∗

⌈P⌉f,D0
E′

2[g s1 w
′
1 · · · sℓ w′

ℓ] with E =

E′
1[E

′
2]. (Formally, this is proved by induction on the length of the reduction sequence.

) By Lemma 4, we obtain the required property. ⊓⊔

Proof. [Theorem 4] By the assumption main⊥ () →∗
⌈P⌉f,D

fail, we have

main⊥ () →∗
⌈P⌉f,D0

E[f s1 w
′
1 · · · sk w

′
k]

with (sk, w
′
k) 6∈ D#. Thus, the statement follows from Lemma 5. ⊓⊔

E Implicit Parameter Instantiation Inference Example

Consider the program indirectHO from Section 3.4. As remarked there, an implicit

parameter is added to the program as follows.

let app h IMPARAM h v = h () v

let id x = x

let rec g x u =

if x <= 0 then id else app σ(ℓ) (g (x-1))

let main () = g ∗int () ()

We initialize σ(ℓ) = 0.

The transformed program ⌈indirectHO⌉σ,app,∅ is shown below.13

13 Here, the program is simplified and only has the implicit parameter is tracked via the ex-

tra parameter for carrying call-tree ancestor’s arguments. That is, it only tracks the previous

h IMPARAM (in ph IMPARAM) and does not track the previous values of h and v.



let app h IMPARAM h ph IMPARAM v =

assert (ph IMPARAM 6= ⊥);
let s = if ∗bool then ph IMPARAM else h IMPARAM in

h s () s v

let id s x = x

let rec g x s u =

if x ≤ 0 then id

else app s 0 s (g s (x-1))

let main xs () = g xs ∗int xs ()

The program causes an assertion failure, and we obtain the counterexample as an er-

ror path in ⌈indirectHO⌉app,∅. Suppose we obtained the error path represented as the

following reduction sequence:

main ⊥ () →∗g ⊥ 2 ⊥ ()

→∗app ⊥ σ(ℓ) ⊥ (g ⊥ 1) ⊥ ()

→∗g σ(ℓ) 1 σ(ℓ) ()

→∗app σ(ℓ) σ(ℓ) σ(ℓ) (g σ(ℓ) 0) σ(ℓ) ()

→∗assert(σ(ℓ)=⊥) → fail

To build the strongest post condition of the counterexample, we build the straight-

line higher-order program (henceforth abbreviated to SHP) corresponding to the coun-

terexample path. SHP is a recursion-free slice of the program obtained by copying func-

tions and removing branches so that it contains no branches and every function occur-

rence is “linear” (i.e., each function is called at most once), such that the evaluating

the SHP results in the counterexample path as the reduction sequence. We refer to the

previous work [16, 33] for more details on SHP.

From the counterexample above, we obtain the following SHP π.14 (Here, the ex-

pression “assume(cond);e” evaluates e if cond is true and otherwise gets stuck

safely.)

let rec main xs () = g(1) xs ∗int xs ()

and g(1) x s u =

assume (¬(x ≤ 0)); app(1) s ℓg(1) s (g(2) s (x-1))

and app(1) h IMPARAM h ph IMPARAM v =

assume (¬(ph IMPARAM 6= ⊥));
let s = h IMPARAM in h s () s v

and g(2) x s u =

assume (¬(x ≤ 0)); app(2) s ℓg(2) s (g(3) s (x-1))

and g(3) x s () = assume (false); u

and app(2) h IMPARAM h ph IMPARAM () =

assume (ph IMPARAM 6= ⊥); fail

14 Unlike in the main body of the paper, here we use π to denote the SHP instead of the coun-

terexample path.



We prepare the template c1,0 + c1,1xg(1) (resp. c2,0 + c2,1xg(2) ) for the instantiation

site ℓg(1) (resp. ℓg(2) ) with fresh unknowns. (Generally, for an instantiation site ℓ, we

prepare the template c0+c1x1+ · · ·+cmxm where x1, . . . , xm are the variables bound

in the context of ℓ.) We let ∆ =
[
c1,0 + c1,1xℓ

g(1)
/ℓg(1)

] [
c2,0 + c2,1xℓ

g(1)
/ℓg(2)

]
be the

template instantiation map.

Then, the following strongest postcondition [[π∆]] is computed by symbolically

evaluating π∆. (The formula is slightly simplified.)

[[π∆]] ≡ xg(1) > 0 ∧ h IMPARAMapp(1) = σ(ℓg(1))
∧ph IMPARAMapp(1) = ⊥ ∧ xg(2) = xg(1) − 1 ∧ xg(2) > 0

∧h IMPARAMapp(2) = σ(ℓg(2))
∧ph IMPARAMapp(2) = h IMPARAMapp(1)

∧ph IMPARAMapp(2) 6= ⊥

Next, we prepare the ranking function template T (x) = c0 + c1x with fresh un-

knowns and solve for the assignments to the unknowns satisfying the constraint below.

∀x̃.[[π∆]] ⇒ T (ph IMPARAMapp(2)) > T (h IMPARAMapp(2)) ≥ 0

Suppose we obtain the following as the solution to the constraint.

c0 7→ 0, c1 7→ 1, c1,0 7→ 0, c1,1 7→ 1, c2,0 7→ 0, c2,1 7→ 1

This gives us the new ranking function r(x) = T (x) [0/c0] [1/c1] and the new implicit

parameter instantiation σ′ = ∆ [0/c1,0] [1/c1,1] [0/c2,0] [1/c2,1]. We refine Dapp from

∅ to {(x, x′) | r(x) > r(x′) ≥ 0}, and the implicit parameter instantiation to σ′.

With the refined candidate well-founded relation and implicit parameter instantia-

tion, the reachability checker is able to verify that ⌈indirectHO⌉σ′,app,Dapp
is assertion

safe. And, the program is verified to be terminating.

F Lexicographic Linear Ranking Function

Cook et al. [5] have proposed a counterexample-guided method to infer a class of well-

founded relations called lexicographic linear ranking functions (LLRFs). LLRFs is a

sequence of ranking functions 〈r1, . . . , rn〉 that represents the following well-founded

relation.
{(x̃′, x̃) |

∨
i≤n

ri(x̃
′) > ri(x̃) ≥ 0 ∧

∧
j≤i−1

rj(x̃
′) ≤ rj(x̃)}

Inferring LLRFs can be done by a constraint-based method similar to the ranking func-

tion inference described in Section 3.4.

As observed in [5], one can often find LLRFs that refutes all the currently-seen

counterexamples to form a sufficient termination argument, which, in turn, allows the

verification process to check the termination argument against the call tree relation as

opposed to the transitive closure of the call tree relation. In an approach based on a

reduction to binary reachability, this means that we can use an optimized version of

the program transformation that avoids building the transitive closure. We informally

describe the optimized transformation using an example.



Example 6. Consider the following program.

let rec f m n =

let r = ∗int in

if r > 0 && m > 0 then f (m-1) ∗int
else if r <= 0 && n > 0 then f m (n-1)

else ()

let main () = f ∗int ∗int

Note that either m or n is decremented non-deterministically by a recursive call to f.

Note that we cannot verify the program’s termination via one linear ranking function,

because the recursion f m n⊲f (m-1) ∗int only depends on the argument m while

the recursion f m n⊲f m (n-1) is not strictly decreasing in m.

Nonetheless, we can verify the program’s termination by using 〈m, n〉 as LLRFs of

f. To do this, we transform the program as follows.

let rec f m (pm, pn) n =

assert (( pm > m && m >= 0)

|| ( pm >= m && pn > n && n >= 0))

let (pm, pn) = (m, n) in

let r = ∗int in

if r > 0 && m > 0 then f (m-1) (pm, pn) n

else if r <= 0 && n > 0 then f m (pm, pn) (n-1)

else ()

let main s () = f ∗int s ∗int

The underlines highlight the main differences from the transformation described in the

main body of the paper. Firstly, the “not decreasing” condition pm >= m of the first

ranking function m is added as the condition guarding the second ranking function (i.e.,

pn > n && n >= 0). Secondly, the state (pm, pn) is deterministically updated

at the beginning the body of f. The reachability checker will find that the program is

assertion safe, and we have verified the program’s termination.

G Further Description of Benchmark Programs

– indirectIntro is P1 from Section 1. That is, it is indirect from Example 2

and 4 but without the simplification. We show the code below.

let rec app f x u =

if x>0 then app f (x-1) u else f x u

let id u = ()

let rec g x = if x <= 0 then id else app g x

let main () = g ∗int ()

– indirect is from Example 2 and 4.

– indirectHO is from Section 3.4.

– CE-0CFA is the program below.



let id x = x

let rec omega x = omega x

let f x y z = y z

let main () = f (f id omega) id 1

The program is from [29], given as an example on which both 0CFA and tree-

automata-based size-change analysis fails. CE-1CFA is its variant obtained by

wrapping each function with an apply function so that 1-limited CFA [29] also

fails. See also the discussion in Section 5.

– up down is the program below.

let rec app f x = f x

and down x = if x = 0 then () else down (x-1)

and up x = if x = 0 then () else up (x+1)

let main () =

let t1 = ∗int in let t2 = ∗int in

if t1 > 0 then app down t1

else if t2 < 0 then app up t2 else ()

The program cannot be verified by 0CFA-based size-change analysis because up

and down are both passed to the first argument of f and the analysis cannot distin-

guish the two functions.

– churchNum is the program below, which is based on the example given in Sec-

tion 7.1 of [12].

let succ m s z = m s (s z)

let id x = x

let two f z = f (f z)

let zero f z = z

let main () = two succ zero id 0

– CE-Jones Bohr is the following program.

let f1 u c d = d

let f2 u a b = a (f1 u)

let f3 u a = a (f2 u a)

let f4 u v = v

let f5 u e = e (f4 u)

let main () = let zz = f3 u (f5 u) in ()

The program is the λ-lifting of (λa.a(λb.a(λcd.d)))(λe.e(λf.f)), which is given

in Section 7.8 of [12] and is used to show a limitation of their approach.

– map is the program below, which is based on the example given in Section 3.1.1 of

[28].

let rec map f xs =

if xs = 0 then 0

else f ∗int + map f (xs - 1)



let compose f g x = f (g x)

let add x y = x + y

let main () =

let l = ∗int in

if l >= 0 then map (compose (add 1) (add 2)) l else 0

– toChurch is the program below.

let compose f g x = f (g x)

let id x = x

let succ x = x + 1

let rec toChurch n f =

if n = 0 then id

else compose f (toChurch (n - 1) f)

let main () =

let x = ∗int in

if x>=0 then let tos = toChurch x succ in ()

else ()

The program is given in Section 4.1 of [28] as an example whose dynamic call

graph includes closures of unbounded depth.

– x plus 2ˆn is the following program given in [12], Section 7.2.

let succ n = n + 1

let g r a = r (r a)

let rec f n = if n=0 then succ else g (f (n-1))

let main () =

let n = ∗int in

let x = ∗int in

if n>=0 && x>=0 then f n x else 0

– foldr is the program below, which is based on the example given in Section 4.4.4

of [28].

let rec foldr h e l =

if l = 0 then e

else h ∗int (foldr h e (l-1))

let sum m n = m + n

let main () =

let l = ∗int in

if l >= 0 then foldr sum ∗int l else 0


