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Abstract—This work explores methods for proving and dis-
proving security of systems under adaptive adversaries. Adaptive
adversaries are ones which make their next move based on the
previous observations. Our first contribution is a new game based
characterization of security. We show that the game accurately
captures security of deterministic and probabilistic systems
against adaptive (probabilistic) adversaries. In addition, we build
on top of the game characterization and present techniques that
expedite proving the existence of attacker and defender strategies,
and consequently proving security or vulnerability of systems.
The first is what we call attack (and defense) slopes which give
simple sufficient criteria for existence of winning strategies (for
attacker and defender). The second is reductions of one game
to another achieved by mapping a strategy of one to that of
the other. We show that such reductions can prove or disprove
security by reducing from a game of a secure system or reducing
to that of a non-secure system.

I. INTRODUCTION

This work is concerned with analyzing systems that operate
on secret information, such as users’ passwords. Information
flow analysis [6], [16], [22], [24] is a well-established approach
to detecting or proving the absence of attacks that steal the
secrets by observing the execution behavior. For instance, non-
interference, which says that there is no information leakage
from observable channels, has been used to check security
against timing channel attacks [1], [5]. Further, quantitative
information flow is an extension of non-interference that maps
observable channels to the quantity of information leak, where
information leak is formalized by information-theoretic notions
such as Shannon entropy [4], [8], [19], [25]. It has been applied
to measure the degree of security of systems against various
classes of attacks [7], [9], [11], [27].

Program Leaky Login
def LL(password, guess):

for (int i = 0; i < guess.length; ++i):
if (password[i] != guess[i]):

return false
return true

Fig. 1: Leaky login program

This work concerns analyzing the security of systems under
adaptive attacks in which the adversaries can make their next
move based on the previous observations. By itself, information
flow analysis is often insufficient for accurately detecting the
possibility of adaptive attacks or proving the absence thereof.
For instance, consider the code snippet shown in Fig. 1, adopted

from [5], [12]. The function LL is a login program that checks
if the input guess matches the secret password. Note that
the running time of the program is proportional to the length
of the common prefix of password and guess. Therefore,
the program is insecure against an adaptive attacker who can
observe the running times as he will be able to reveal the
elements of password iteratively by crafting appropriate
inputs to be used as guess each time.1

More concretely, suppose that the alphabet of the password
is the binary {0, 1} for simplicity. Then, in the setting of
information flow, the situation is formalized as the program
Pins(s, v) that takes secret input s and public input v where
s, v ∈ {0, 1}`, ` is the length of the password, and Pins(s, v)
outputs the length of the common prefix of s and v, along
with a boolean that expresses whether s is equal to v. Pins
is not non-interferent [6], [16], [22], [24] because there exist
inputs v, s1, s2 such that Pins(s1, v) 6= Pins(s2, v), for example,
v = 0000, s1 = 0100, and s2 = 0010. (Formally, P is said to
be non-interferent if and only if P(s1, v) = P(s2, v) for all
public inputs v and secret inputs s1 and s2.) In this way, the non-
interference based method of [5] is able to successfully detect
the vulnerability. However, consider a correct login program
that only reveals whether the guess matches the password or
not. Such a program can be described as Psec(s, v) where
Psec(s, v) = true if s = v and Psec(s, v) = false otherwise.
Non-interference is insufficient to show the security of Psec.
Indeed, Psec(s1, v) 6= Psec(s2, v) for any v = s1 6= s2.

Quantitative information flow (QIF) has been proposed as a
formalism to cope with situations such as the above [4], [8],
[19], [25].2 QIF maps programs to real numbers denoting the
quantity of information leak so that the larger the leak quantity
the less secure the program. For example, the capacity QIF
measure defines information leak to be the number of different
outputs obtained by varying the secret input, maximum over
all public inputs. (Incidentally, capacity is equivalent to the
maximum Shannon entropy over the distributions of secrets,
and to min entropy for uniformly distributed secrets [19].3)
Note that the capacity is 1 for non-interferent programs, 2 for

1Often, the output of the program (regular channel) is treated separately
from observations related to the running time (side channel), but in this work
both are treated the same, bundled as an observation.

2Another, orthogonal, approach is declassification which permits information
marked as “declassified” to leak for free [13], [17], [26] (also implicitly used
in [5]). However, the security would now depend on the correctness of the
declassification policy.

3Technically, capacity is defined to be the log of the number of outputs.



Psec, and ` for Pins. Hence, based on the capacity measure,
we may conclude that Psec is reasonably secure, as it only
leaks a constant amount of information regardless of the secret
size. However, it is easy to construct a situation in which the
adversary is able to efficiently decipher the secret despite the
program only having a constant capacity QIF. For instance,
let Piq(s, v) be such that s ∈ {0, 1}`, v ∈ {1, ..., `}, and
Piq(s, v) = s[v − 1]. That is, Piq(s, v) leaks the v-th element
of s (see Fig. 2 in Section V). The capacity of Piq is 2 as there
are only two possible outputs, but Piq is efficiently attackable
by simply querying the secret one element at a time.

To address the issue, researchers have suggested to extend
the information flow analysis approach to compute QIF over
multiple attacker queries [15], and more generally over adaptive
attack strategies [7], [10], [11]. The latter works introduced the
notion of attack tree which is an important conceptual device
for reasoning about security against adaptive attacks.

In this paper, we build on the previous works to explore
new methods for accurately analyzing the security of systems
under adaptive adversaries. Our first contribution is a new
game-based characterization of security, in which there are
two players attacker and defender such that the existence of
a winning strategy for the attacker implies that the system is
insecure and that for the defender implies that it is secure. The
game is inspired by the notion of attack trees mentioned above.
However, whereas the previous works have used the idea to
compute QIF for a particular attack strategy or maximum QIF
over all attack strategies of some bounded lengths, we show
that our game is able to accurately capture the existence or the
impossibility of efficient attacks, where efficiency is measured
by bounds on the number of attack steps and the probability of
the attack success. Importantly, our approach is able to derive
bounds that are parametric to size of the secrets.

Further, building on the game-based characterization, we
propose approximation techniques, called attack slopes and
defense slopes, that can be used to show the existence of
attacker and defender winning strategies. Currently, the slope
technique is limited to deterministic systems and uniformly-
distributed secrets, but we expect it to be extendable to more
general settings. Finally, we continue capitalizing on the notion
of game strategies to propose a form of reduction from one
game to another, that aims to reuse the work done on proving
a system secure or vulnerable, on the analysis of new systems.

The main contributions of the paper are summarized below.

(1) A new game-based characterization of security under
adaptive adversaries (Section III).

(2) Approximation techniques called attack slopes and defense
slopes (Section V).

(3) Reductions between games that can be used to show that
one game (and hence the corresponding system) is less
or more secure than the other (Section VI).

The rest of the paper is organized as follows. Section II
provides some preliminary definitions. In Section III, we define
the games and prove that they accurately characterize the
security of systems against adaptive adversaries. Section IV

illustrates the games on deterministic systems with uniformly-
distributed secrets, and Section V presents the slope-based
approximations for such systems. Section VI presents the game
reductions. We discuss related work in Section VII and conclude
the paper in Section VIII.

II. PRELIMINARIES

We write N for the set of natural numbers {0, 1, . . .}, and
N+ for the set of positive natural numbers N \ {0}. R is the
set of real numbers, and we denote by [r1, r2] the set of real
numbers {r ∈ R | r1 ≤ r ≤ r2}. For a set D, we write D∗

for the set of finite sequences of elements from D, and denote
elements of D∗ with the vector notation ~d. We denote the
length of such a sequence with |~d|. If ~d ∈ D∗ and b ∈ D,
we denote with ~d · b the sequence obtained by appending b to
the sequence ~d, resulting in a sequence of length |~d|+ 1. We
denote with ε the empty sequence.

As standard, we assume security parameter that describes
the size of secrets. A system (or program) P is an indexed
family of functions (indexed by the security parameter) that
represent the input-output relation of the system. S is a security-
parameter-indexed family of sets of secrets, I is a security-
parameter-indexed family of sets of attacker-controlled inputs,
and O is a security-parameter indexed family of observations.
A security parameter is a natural number that represents the
size of secrets, and we write S` for the set of secrets of size
`, and I` and O` for the corresponding attacker inputs and
observations. Each indexed function P` is a function from
S` × I` to probability distributions over O`. That is, for each
(s, v) ∈ S` × I`, P`(s, v) = µ for some µ : O` → [0, 1] such
that

∑
o∈O`

µ(o) = 1. We omit the security parameter when
it is clear from the context and write S, I, O, and P for S`,
I`, O`, and P`, respectively.

The support of a probability distribution µ : O → [0, 1] is
defined as standard: supp(µ) = {o ∈ O | µ(o) > 0}. For a
program P , v ∈ I , and o ∈ O, we write P−1(v, o) for the set
{s ∈ S | o ∈ supp(P (s, v))}. Roughly, P−1(v, o) is the set of
secrets that have a non-zero probability of making P output o
on input v. We also extend the notation to a sequence of inputs
and observations so that for ~v = v1, . . . , vn and ~o = o1, . . . , on,
P−1(~v, ~o) is the set of secrets that have a non-zero probability
of making P output oi on input vi for each i ∈ {1, . . . , n}.
Formally, P−1(~v, ~o) is defined inductively by: P−1(ε, ε) = S
and P−1(~v · v, ~o · o) = P−1(~v, ~o) ∩ P−1(v, o).

We say that P` is deterministic if for all (s, v) ∈ S` × I`,
P`(s, v) is a point mass (i.e. P`(s, v)(o) = 1 for some o ∈ O`).
We say that P is deterministic when P` is deterministic for
each `. In literature, deterministic systems are sometimes also
called noiseless to contrast with the case where the attacker’s
observation is subject to noise and cannot be made exact.
For example, often in timing attacks, the attacker is not able
to know exactly how many loop iterations have taken place.
Such noisy observations may be modeled by the more general
probabilistic systems.

For any two functions f : N+ → R and g : N+ → R, we
denote with (f op g), for op ∈ {+,−,×, /}, the function of



type N+ → R that maps any n ∈ N+ to f(n) op g(n). For
two functions f : N→ R and g : N→ R, we say that f > g,
if for all n ∈ N, f(n) > g(n). By abuse of notation, we often
implicitly treat an expression e on the security parameter ` as
the function λ` ∈ N+.e.

An attacker is a randomized algorithm A that attempts
to discover the secret by making some number of queries
to the system. As standard, we assume that A has the full
knowledge of the system. Formally, A takes as inputs a function
η : I` → O` and a natural number n ∈ N and outputs an
element of S`. We restrict A(η, n) to call η at most n many
times. As standard, A is only allowed to use η “extensionally”
as an oracle, and it is not allowed to see the internals of
η. Intuitively, A is not allowed to see the internals of the
system once a secret has been fixed. Namely, η will be of
the form λv ∈ I`.P`(s, v) for some s ∈ S` that the attacker
aims to recover. We impose no restriction on how the attacker
chooses the inputs to the system. Importantly, he may choose
the inputs based on the outputs of previous oracle queries.
Such an attacker is said to be adaptive [11].

The set of secrets S` are equipped with probability distribu-
tion µ` : S` 7→ [0, 1]. For a distribution of secrets µ, we write
Prs←µ[A] for the probability that the event A happens when
the secret s is chosen randomly according to the distribution µ.
Therefore, for instance, Prs←µ[A(λv ∈ I`.P`(s, v), n) = s]
is the probability that the attacker A recovers the secret s in
n many queries to the system, when s is chosen randomly
according to the distribution µ. We formalize the notion of
security against adaptive attackers as follows.

Definition II.1 (Security). Let ε : N → [0, 1], f : N → N be
two mappings. We say that P is (f, ε)-secure if for any ` ∈ N+

and any attacker A, we have

Pr
s←µ`

[A(λv.P (s, v), f(`)) = s] < ε(`)

Otherwise, the program P is (f, ε)-insecure.

Notice that for any program P , and functions ε : N→ [0, 1]
and f : N→ N the following hold:
• If P is (f, ε)-secure, then it is also (f, ε′)-secure for any
ε′ : N→ [0, 1] such that ε < ε′.

• If P is (f, ε)-insecure, then it is also (f ′, ε)-insecure for
any f ′ : N→ N such that f < f ′.

It should be noted that this definition of security is used in
our earlier work [23] and it also closely corresponds to the
definition used in the DARPA STAC program [20].

Given an attacker algorithm A, we denote with µA the
probability distribution with which the attacker selects a public
input w ∈ I to feed into the program and observe the output.
More formally, for any ~v ∈ I∗, ~o ∈ O∗ with |~v| = |~o| and
w ∈ I , we denote with µA[~v, ~o](w) the probability that A will
choose w ∈ I for the next input, after having observed the
sequence ~o when having fed to the program the sequence of
inputs ~v in the previous |~v| queries. By defining the attacker
algorithm in such a way, we allow both deterministic and
randomized attacker algorithms.

III. GAMES

Definitions: For a program P , s ∈ S`, v ∈ I, and o ∈ O
we denote with µ(o | s, v) the probability that P (s, v) will
output o. That is, µ(o | s, v) = P (s, v)(o). We use µ(s | ~v, ~o)
to denote the probability that the secret is s conditionally on
having observed the sequence ~o when given inputs ~v, where
|~v| = |~o|. Using Bayes’ theorem, it can be shown that for any
s ∈ S`, ~v ∈ I∗, w ∈ I, ~o ∈ O∗, and q ∈ O,

µ(s | ~v · w,~o · q) =
µ(q | s, w) · µ(s | ~v, ~o)∑

s′∈S` µ(q | s′, w) · µ(s′ | ~v, ~o) . (1)

Here, µ(s | ε, ε) = µ`(s) where µ` is the prior probability
distribution associated with S` (cf. Section II).

For ~v ∈ I∗, w ∈ I, ~o ∈ I∗, and q ∈ O, where |~v| = |~o|,
we denote with µ(q | w;~v, ~o) the probability of observing
the output q, by feeding the program the input w, under
the condition that we have already observed the sequence
of observations ~o given inputs ~v. More formally, the definition
of µ(q | w;~v, ~o) is

µ(q | w;~v, ~o) =
∑
s∈S`

µ(s | ~v, ~o) · µ(q | s, w). (2)

Thus, from (1) and (2), for any s ∈ S`,

µ(s | ~v · w,~o · q) =
µ(q | s, w) · µ(s | ~v, ~o)

µ(q | w;~v, ~o)
, (3)

and therefore, for any s ∈ S`, where µ(s | ~v · w,~o · q) 6= 0,

µ(q | w;~v, ~o) =
µ(q | s, w) · µ(s | ~v, ~o)
µ(s | ~v · w,~o · q) .

Note that for any s ∈ S`, if µ(s | ~v · w,~o · q) 6= 0 then
µ(s | ~v, ~o) 6= 0 and µ(q | s, w) 6= 0.

Game: We define the n-round r-confidence game, for n ∈ N
and r ∈ [0, 1] as follows. The game is played by two players,
Attacker and Defender.4 At any round i ∈ N of the game,
we denote the position by 〈~v, ~o, ri〉, where |~v| = |~o| = i and
ri ∈ [0, 1]. At round 0, the position is 〈ε, ε, r0〉, where r0 is the
confidence parameter r. At each round, from position 〈~v, ~o, ri〉,
Attacker makes the first move, and chooses w ∈ I and a
function rw : O → [0, 1], such that ri =

∑
q∈O µ(q | w;~v, ~o) ·

rw(q). Defender then replies with an observation q ∈ O. The
new position is then 〈~v · w,~o · q, rw(q)〉. In other words, the
input w is appended to the vector of inputs, the observation q
is appended to the vector of observations, and the confidence
parameter ri+1 is set to rw(q). Defender wins the game at round
n, at position 〈~v, ~o, rn〉 exactly when maxs∈S` µ(s | ~v, ~o) < rn.
Otherwise, Attacker wins at round n.

Remark III.1. Defender, when it’s time for her move, can
choose any q ∈ O, without any condition on the probability
with which q may be observed at that point. In fact, the
probability of q being observed on public input w ∈ I , having
already observed ~o on inputs ~v, could just as well be 0. In other

4For convenience, we choose Defender to be female and Attacker to be
male.



words µ(q | w;~v, ~o) could be 0. Notice however, that for all
such q ∈ O, Attacker can set rw(q) to 0, without affecting the
sum

∑
q∈O µ(q | w;~v, ~o) ·rw(q), and as such without affecting

the condition for constructing rw. If Defender chooses such
a q, then she is bound to lose the game because after any
subsequent moves, maxs∈S` µ(s | ~v, ~o) will not be strictly less
than rw(q) = 0 at the end.

As a result, at each round, after a move w ∈ I by Attacker,
we can think of Defender as internally choosing a secret s ∈ S ,
that is probabilistically still possible, and then choosing an
observation q that is possible after executing the underlying
program P on inputs w and s, without disclosing what s is.
Under this interpretation, notice that Defender is allowed to
keep changing her secret s as the game progresses. N

A strategy for a player is a set of rules that describes how
the player moves given the history of moves played already.
We say that Defender wins the n-round r-confidence game, if
she has a strategy to do so for any Attacker moves, starting
at position 〈ε, ε, r〉. Similarly, we say Attacker wins the n-
round r-confidence game if he has a strategy to do so, for any
Defender moves.

In Section IV, we go through an example for a simplified
version of this game, corresponding to deterministic systems
and uniformly-distributed secrets. As stated in the theorem
below, the game completely characterizes (f, ε)-security.

Theorem III.2. A program is (f, ε)-secure if and only if, for
all ` ∈ N+, Defender wins the f(`)-round ε(`)-confidence
game.

Proof: Given ~v ∈ I∗ and ~o ∈ O∗, we denote with µ[~v, ~o]
the probability distribution over S`, conditionally upon having
observed ~o when given inputs ~v. Formally, for any s ∈ S`,
µ[~v, ~o](s) = µ(s | ~v, ~o). For what follows, we fix arbitrary
` ∈ N+.

We will show by induction on n, that for all n ∈ N+,
r ∈ [0, 1] and for all ~v ∈ I∗ and ~o ∈ O∗, it holds that
Prs←µ[~v,~o][A(λv.P (s, v), n) = s] < r for any attacker A, if
and only if Defender wins the n-round r-confidence game from
position 〈~v, ~o, r〉 on P .

For the base case, we have that n = 0. Then it holds that
Prs←µ[~v,~o][A(λv.P (s, v), n) = s] < r for any attacker A
if and only if maxs∈S µ(s | ~v, ~o) < r. That is because in
the worst case Attacker will choose the most likely secret s
from P−1(~v, ~o), and succeed with probability µ(s | ~v, ~o). We
proceed to the inductive case. For s ∈ S , let ηs = λv.P (s, v).
Furthermore, for any attacker A, and any w ∈ I, q ∈ O, we
denote with A(w,q) the attacker that corresponds to how the
attacker A operates after observing q ∈ O on their query to
ηs with w ∈ I. Then, notice that

Prs←µ[~v,~o][A(ηs, n) = s]
=

∑
s∈S µ(s | ~v, ~o) · Pr[A(ηs, n) = s]

=
∑
s∈S µ(s | ~v, ~o) ·∑w∈I µA[~v, ~o](w)·∑

q∈O µ(q | s, w) · Pr[A(w,q)(ηs, n− 1) = s]

=
∑
s∈S

∑
w∈I

∑
q∈O µ(s | ~v, ~o) · µA[~v, ~o](w)·

µ(q | s, w) · Pr[A(w,q)(ηs, n− 1) = s].

Then, since µ(s | ~v · w,~o · q) = µ(q|s,w)·µ(s|~v,~o)
µ(q|w;~v,~o) by Equation

(3), we have that the above is equal to∑
s∈S

∑
w∈I

∑
q∈O µA[~v, ~o](w) · µ(q | w;~v, ~o)·

µ(s | ~v · w,~o · q) Pr[A(w,q)(ηs, n− 1) = s]
=

∑
w∈I

∑
q∈O µA[~v, ~o](w) · µ(q | w;~v, ~o)·∑

s∈S µ(s | ~v · w,~o · q) Pr[A(w,q)(ηs, n− 1) = s]
=

∑
w∈I

∑
q∈O µA[~v, ~o](w) · µ(q | w;~v, ~o)·

Prs←µ[~v·w,~o·q][A(w,q)(ηs, n− 1) = s]
=

∑
w∈I µA[~v, ~o](w) ·∑q∈O µ(q | w;~v, ~o)·

Prs←µ[~v·w,~o·q][A(w,q)(ηs, n− 1) = s].

For any w ∈ I, let rw : O → [0, 1] be any function such that
r =

∑
q∈O µ(q | w;~v, ~o) · rw(q).

Claim: The value of∑
w∈I µA[~v, ~o](w) ·∑q∈O µ(q | w;~v, ~o)·

Prs←µ[~v·w,~o·q][A(w,q)(ηs, n− 1) = s]

is less than r for any attacker A, if and only if for any w ∈ I ,∑
q∈O

µ(q | w;~v, ~o) · Prs←µ[~v·w,~o·q][A(w,q)(ηs, n− 1) = s] < r,

for any attacker A.
Proof of Claim: Suppose that the sum above is less than r
for any attacker A. Suppose for contradiction that there exist
w ∈ I, and attacker A, such that∑
q∈O

µ(q | w;~v, ~o) · Prs←µ[~v·w,~o·q][A(w,q)(ηs, n− 1) = s] ≥ r.

Then define the attacker A to be such that µA[~v, ~o](w) = 1
and µA[~v, ~o](w′) = 0 for all w′ 6= w. Clearly then the value
of the expression above is greater than or equal to r for some
attacker A, which is a contradiction. For the other direction,
if for all w ∈ I it holds that∑
q∈O

µ(q | w;~v, ~o) · Prs←µ[~v·w,~o·q][A(w,q)(ηs, n− 1) = s] < r,

for any attacker A, then the expression above is less than r.
� (Claim)
Claim: It holds that for all w in I and all attackers A,∑
q∈O

µ(q | w;~v, ~o) · Prs←µ[~v·w,~o·q][A(w,q)(ηs, n− 1) = s] < r,

if and only if, for all w ∈ I with respective rw, there is a
q ∈ O with µ(q | w;~v, ~o) > 0 such that for any attacker A

Prs←µ[~v·w,~o·q][A(ηs, n− 1) = s] < rw(q).

Proof of Claim: By definition, for any rw it holds that r =∑
q∈O µ(q | w;~v, ~o) · rw(q). For the only if direction, suppose

that for all w ∈ I and all attackers A,∑
q∈O

µ(q | w;~v, ~o) · Prs←µ[~v·w,~o·q][A(w,q)(ηs, n− 1) = s] < r.



Then for all w ∈ I, any rw that satisfies the game condition
and any attacker A,∑
q∈O

µ(q | w;~v, ~o) · Prs←µ[~v·w,~o·q][A(w,q)(ηs, n− 1) = s] <∑
q∈O

µ(q | w;~v, ~o) · rw(q).

Therefore, for all w ∈ I , rw : O → [0, 1] and attacker A, there
is a q ∈ O such that

Prs←µ[~v·w,~o·q][A(w,q)(ηs, n− 1) = s] < rw(q).

For each q ∈ O, let A+
q be the attacker that maximises their

probability of success for the remaining n − 1 moves under
the probability distribution of secrets µ[~v · w,~o · q]. Formally,
let A be the collection of all attackers, and for any q ∈ O let
A+
q be the attacker such that

Prs←µ[~v·w,~o·q][A+
q (ηs, n− 1) = s] =

max
A∈A

Prs←µ[~v·w,~o·q][A(ηs, n− 1) = s]. (4)

Let then A+ denote the attacker that behaves like A+
q once the

observation q is fixed, for every q ∈ O. We know that for all
w ∈ I, rw : O → [0, 1] and any attacker A, there is a q ∈ O
such that

Prs←µ[~v·w,~o·q][A(w,q)(ηs, n− 1) = s] < rw(q).

For any w ∈ I and rw : O → [0, 1], let q ∈ O be the
observation that works for the attacker A+. Then by definition
of A+ (Eq. 4), it follows that for any w ∈ I and rw : O →
[0, 1], q ∈ O is such that

Prs←µ[~v·w,~o·q][A(ηs, n− 1) = s] < rw(q).

for any attacker A.
For the if direction, suppose that for some w in I and some

attacker A,∑
q∈O

µ(q | w;~v, ~o) · Prs←µ[~v·w,~o·q][A(w,q)(ηs, n− 1) = s] ≥ r.

Change A to A− so that the inequality above is actually an
equality. In other words, for some w in I and the attacker A−,∑
q∈O

µ(q | w;~v, ~o) · Prs←µ[~v·w,~o·q][A−(w,q)(ηs, n− 1) = s] = r.

Then define rw to be such that for each q ∈ O with µ(q |
w;~v, ~o) > 0,

rw(q) = Prs←µ[~v·w,~o·q][A−(w,q)(ηs, n− 1) = s].

Notice that since the sum above is equal to r, this mapping rw
satisfies the conditions of the game. But then notice that the
following immediately follows. There is some w ∈ I, some
rw : O → [0, 1] and the attacker A− is such that for all q ∈ O,
if µ(q | w;~v, ~o) > 0 then

Prs←µ[~v·w,~o·q][A−(w,q)(ηs, n− 1) = s] ≥ rw(q).

But then it also follows that there is some w ∈ I, some
rw : O → [0, 1] such that for all q ∈ O, there is an attacker
A, namely A−(w,q), such that if µ(q | w;~v, ~o) > 0 then

Prs←µ[~v·w,~o·q][A(ηs, n− 1) = s] ≥ rw(q)

as required. � (Claim)
By the induction hypothesis, it holds that

Prs←µ[~v·w,~o·q][A(ηs, n− 1) = s] < rw(q),

for any attacker A, if and only if Defender has a winning
strategy for the (n−1)-round rw(q)-confidence game from the
position 〈~v · w,~o · q, rw(q)〉. We showed that for any attacker
A, Prs←µ[~v,~o][A(ηs, n) = s] < r if and only if for all w ∈ I
with respective rw, there is a q ∈ O with µ(q | w;~v, ~o) > 0
such that for any attacker A

Prs←µ[~v·w,~o·q][A(ηs, n− 1) = s] < rw(q).

By the induction hypothesis it follows that the latter holds if
and only if for all w ∈ I with respective rw, there is a q ∈ O
with µ(q | w;~v, ~o) > 0, such that Defender has a winning
strategy for the (n−1)-round rw(q)-confidence game from the
position 〈~v · w,~o · q, rw(q)〉. Finally, this holds if and only if
Defender has a winning strategy for the n-round r-confidence
game from the position 〈~v, ~o, r〉, as required.

The intuition behind Attacker choosing a function rw is
as follows. When Attacker chooses a public input w ∈ I,
he does not know what q ∈ O Defender may reply with, so
he assigns different success goals for each q ∈ O using the
mapping rw : O → [0, 1], and lets Defender know of how he
has weighed all the different scenarios. Defender then, consults
these targets, and replies with a q ∈ O trying to maximize her
chances of winning. We remind the reader that Defender can
reply with any q ∈ O irrespectively of the probability that such
a q could be output by the program at input w. This is because
these probabilities have been encoded in the constraints of how
Attacker can construct the mapping rw.

Remark III.3. It is worth noting that for the special case where
r = 1, at each position 〈~v, ~o, r〉, and for any move w ∈ I,
the only function rw that satisfies the condition for Attacker’s
moves, is the one where rw(q) = 1 for all q ∈ O, for which
µ(q | w;~v, ~o) > 0 holds. At the same time, as pointed out in
Remark III.1, Defender should only consider responses q that
could be observed on input w and some secret s that is still
possible, or in other words q should be in supp(P (s, w)) for
some s ∈ P−1(~v, ~o). Therefore the game reduces to the simpler
version where Attacker chooses w ∈ I and Defender chooses
s ∈ S` that is still in play, and replies with any observation
q ∈ O possible by executing P (s, w). N

Remark III.4. Attacker in the game does not need to consider
probabilistic moves. As it can be seen by the proof of
Theorem III.2, and in particular the second claim in it, there
is a deterministic attack stategy that is optimal for Attacker.



IV. DETERMINISTIC SYSTEMS AND UNIFORM
DISTRIBUTIONS

In this section, we consider a simplified version of a game in
which programs are deterministic and the distribution of secrets
is uniform. Also, for simplicity we assume that for each `, the
set of secrets S` comprises binary strings of length `, that is,
S` = {0, 1}` and µ`(s) = 1/2` for all s ∈ S`. Note that, in
this setting, for any s ∈ S` and w ∈ I, µ(q | s, w) is equal
to 1 for exactly one q ∈ O, and 0 for all others. Similarly, it
can be shown by induction, that for all s ∈ S`, ~v ∈ I∗ and
~o ∈ O, µ(s | ~v, ~o) is equal to 1

|P−1(~v,~o)| if s ∈ P−1(~v, ~o) and
0 otherwise. Therefore, by Eq. (2) we have that

µ(q | w;~v, ~o) =

1
|P−1(~v,~o)|

1
|P−1(~v·w,~o·q)|

=
|P−1(~v · w,~o · q)|
|P−1(~v, ~o)| ,

when P−1(~v, ~o) and P−1(~v · w,~o · q) are non-empty, and 0
otherwise. Let us call the setting uniform-deterministic.

For uniform-deterministic games, Theorem III.2 implies that
a program P is (f, ε)-secure if and only if for all ` ∈ N+,
Defender wins the f(`)-round ε(`)-confidence game, where
at each round at position 〈~v, ~o, r〉, Attacker has to ensure that
r =

∑
q∈O

|P−1(~v·w,~o·q)|
|P−1(~v,~o)| ·rw(q), and at the last round (at some

position 〈~v, ~o, r〉), it holds that 1
|P−1(~v,~o)| < r. Furthermore,

when Defender internally selects a secret value s, this value
directly determines the observation o she replies with, as for
any w ∈ I, P (s, w) can only take one value.

Given the simpler setting, it is now easier to provide some
intuition for the game and why Attacker is allowed to change
the weight for the different choices by Defender, using a simple
example. Consider a very simple game with only one round,
where the initial set of secrets is S4 with 16 secrets, and there
are exactly two possible observations o1 and o2 in O, such that
for any v ∈ I, |P−1(v, o1)| = 12 and |P−1(v, o2)| = 4. In
this game, Defender would always reply with the observation
o1, as the number of secrets compatible with that observation
is a lot higher, and as a result µ(s | v, o1) (equal to 1

12 ) is a
lot lower than µ(s | v, o2) (equal to 1

4 ). The actual probability
Attacker can guess the secret is 1

16 ·12 · 1
12 + 1

16 ·4 · 14 = 1
8 (after

one round, the probability of correctly guessing the secret is
1
12 for 12 of the 16 secrets and 1

4 for 4 of them). Without any
further condition, if Defender chose o1 as her move, then she
could make it seem like the probability of Attacker’s success
is 1

12 , which is less than the actual one (i.e., 1
8 ).

In our games, Attacker has way of dealing with this issue,
by defining the function rv : O → [0, 1]. This way, Attacker
can define rv(o1) to be lower than rv(o2), giving the incentive
to Defender to also consider o2 as a move. Concretely, suppose
that Attacker chose the function rv to be such that rv(o1) = 0.
Then if Defender chose o1 as her move, she would require

1
|P−1(v,o1)| < 0 to win, which is not possible. She would then
definitely choose o2. It is, however, not to Attacker’s advantage
to choose such extreme valuations of rv . Recall that the game
enforces the constraint r =

∑
q∈O µ(q | v;~v, ~o) · rv(q) where

〈~v, ~o, r〉 is the current game position. This implies that, in our
example, rv must satisfy r =

∑
i∈{1,2} µ(oi | v; ε, ε) · rv(oi)

where r is the initial confidence parameter. With rv(o1) being 0,
rv(o2) would have to be 1

2 , if he wants to win the 1
8 -confidence

game and satisfy the constraint with his move. But with such
a high value of rv(o2), Defender can win that position since

1
|P−1(v,o2)| <

1
2 . The best move for Attacker is to choose

rv(o1) to be 1
12 and rv(o2) to be 1

4 . This way for both oi,
1

|P−1(v,oi)| ≥ rv(oi), and

rv(o1) · |P
−1(v,o1)|
|S4| + rv(o2) · |P

−1(v,o2)|
|S4| =

= 1
12 · 12

16 + 1
4 · 4

16 = 1
8 .

For the rest of this section, Prs←Q[A(λv.P (s, v), n) = s]
denotes the probability that the attacker algorithm can find the
secret s (using at most n calls to the program), when the secret
is drawn uniformly at random from the set Q. In contrast,
for Pr[A(λv.P (s, v), n) = s], where the subscript s ← Q is
missing, denotes Prs←{s}[A(λv.P (s, v), n) = s].

Example IV.1. Let Psec be the program from Section I. Let
f(`) = 2 · ` and ε(`) = 1 for all ` ∈ N+. We show that the
program is (2 · `, 1)-secure, that is Attacker cannot find the
secret with absolute certainty after 2 · ` many tries. In order
for Defender to win the game, after f(`) rounds, 1

|P−1
sec(~v,~o)|

must be strictly less than 1, or in other words, |P−1
sec (~v, ~o)|must

be strictly more than 1. That implies that the probability that
the attacker algorithm will guess the secret is less than 1, as
expected. N

We go through the simple example Pins and show that it is
vulnerable, with only a linear number of tries.

Proposition IV.2. Attacker has a winning strategy for the
(`+ 1)-round 1-confidence game on program Pins.

Proof: We can show by induction on the number of rounds
that Attacker has a strategy, such that at each round i, at position
〈~v, ~o, 1〉, there exists w ∈ {0, 1}i−1 such that P−1

ins (~v, ~o) ⊆
{w · z ∈ S` | z ∈ {0, 1}`−i+1}. This implies that at round
`+ 1, |P−1

ins (~v, ~o)| = 1. We remind the reader, that according
to Remark III.3, Attacker needs to choose only an input w ∈ I
at each move, and not a mapping rw : O → [0, 1]. For the
base case, let i = 1. Then at the first round P−1

ins (ε, ε) =
{z ∈ S` | z ∈ {0, 1}`} as required. For the inductive case,
suppose that the statement holds for all i ≤ I , for some
I ∈ N, and consider the case where i = I + 1. Then, by
the inductive hypothesis, there exists w ∈ {0, 1}I−1 such that
P−1

ins (~v, ~o) ⊆ {w · z ∈ S` | z ∈ {0, 1}`−I+1}. Attacker then
chooses vI to be equal to any string that starts with w and
Defender replies with oI ∈ O. Notice that if Defender replies
with oI < |w| = I − 1, then P−1

ins (~v · vI , ~o · oI) is empty, since
for all s ∈ P−1

ins (~v, ~o), s = w · z for some z ∈ {0, 1}`−I+1

and therefore for all such s, prefix(s, vI) ≥ |w|. Assume then
that Defender replies with oI ≥ |w| = I − 1. Let yI be the
prefix of vI of length oI + 1, and notice that by definition
P−1

ins (~v · vI , ~o · oI) contains no secret with prefix yI . Let wI
be equal to the string obtained from yI by flipping the last
bit in that string. Then wI , of length oI + 1, is such that
P−1

ins (~v · vI , ~o · oI) ⊆ {wI · z ∈ S` | z ∈ {0, 1}`−oI+1}. Since



oI ≥ I − 1, it follows that there exists u of length I , such that
P−1

ins (~v · vI , ~o · oI) ⊆ {u · z ∈ S` | z ∈ {0, 1}`−I} as required.

A. Adaptive vs. Non-adaptive attacks

Adaptive attacks are naturally a lot more powerful than non-
adaptive attacks, and here we demonstrate some strong lower
bounds for the gap between the number of moves or tries
required by a non-adaptive attacker compared to the number
of moves required by an adaptive attacker. First we need to
define a non-adaptive game. Such a game would be like the
one defined for adaptive attacks, but where Attacker’s choices
do not depend on Defender’s moves at all. In such a game,
Attacker can perform all his moves at the very beginning, and
Defender can reply with her moves after Attacker has finished
moving. The winning condition in the end is the same.

The following example illustrates the gap between the power
of an adaptive attacker and a non-adaptive one. It is an
adaptation of an example presented in [7], generalized to the
setting where the security bounds are parametric to the size of
secrets. Even though the generalization is easy to produce, we
present it here for completeness.

Example IV.3. Let Pdis be a program that discloses all the
secret information but in two steps, parameterized by the secret
length `. For any `, the program has two inputs as usual, v ∈ I
and s ∈ S. For s ∈ S`, define s1 and s2 to be such that
s = s1 · s2, and |s1| = ` − 1. Given v, we define v1 and v2,
similarly. The program Pdis then operates as follows on inputs
v and s. If v1 ·v2 is equal to s1 · s2 then the program returns 1.
Otherwise, if v1 is equal to s1, the program returns s2. Finally,
if none of the above hold, the program returns s1.

It is easy to see that an adaptive attacker can find the secret
in 2 steps. First they try any input v, on which the program,
in the worst case, will return the string s1. At the second step,
Attacker tries any string with prefix s1, at which point the
program will return s2 and the secret is simply s1 · s2. N

Lemma IV.4. There exists program P such that for each ` ∈ N,
Attacker wins the 2-round 1-confidence adaptive game on P ,
but for all ` larger than some `0 ∈ N, Attacker does not win
the (2`−1 − 1)-round 1-confidence non-adaptive game.

Proof: Consider the program Pdis from Example IV.3. It
was shown that Attacker can win the 2-round 1-confidence
game. We need to show that for large enough ` ∈ N, the
Defender wins the (2`−1−1)-round 1-confidence non-adaptive
game. Let m = 2`−1 − 1 and let ~x = x1, . . . , xm be the
sequence of moves performed by the Attacker in the non-
adaptive game. Then, there is s1 ∈ {0, 1}`−1, that is not a
prefix of any of the xi. Let S be the set of strings of length `
that start with s1. Defender then defines ~o to be the sequence
where for all 1 ≤ i ≤ m, oi = s1. Then notice that (i) for
any s in S, and any xi, Pdis(s, xi) = oi, and (ii) there are
at least two secrets s and s′ in S, namely s1 · 0 and s1 · 1.
Therefore, by (i) S ⊆ P−1

dis (~x, ~o), and by (ii) |S| ≥ 2. Hence
1

|P−1

dis (~x,~o)| < 1, as required for Defender to win the game.

Corollary IV.5. There exists a program P , that is (2, 1)-
insecure in the adaptive setting, but (2`/2, 1)-secure in the
non-adaptive setting.

V. ATTACK AND DEFENSE SLOPES

In this section, we use the game-characterization developed
earlier, to approximate the search of attack strategies on
programs, or show they are secure against attacks of certain
length. We define the notion of slopes, which intuitively
describe how quickly an attacker can refine their knowledge
about the secret. In this section, we carry over the uniform-
deterministic setting from Section IV.
Attack Slope: Suppose a program P is such that there exists
h ∈ [0, 1] and k ∈ N+, where for each ~v ∈ I∗ and ~o ∈ O∗
of the same length, there is a sequence ~w ∈ Ik of length k,
such that for any sequence ~q ∈ Ok, |P

−1(~v·~w,~o·~q)|
|P−1(~v,~o)| ≤ h, or

|P−1(~v · ~w,~o · ~q)| = 1. We call such a pair of numbers (k, h),
the attack slope for P .

Lemma V.1. Let P be a program with a (k, h) attack slope,
with k ∈ N+ and h ∈ [0, 1]. Then, for any n ∈ N+, P is
(n · k, 1

hn·2` )-insecure.

Proof: We will show by induction on n that Attacker wins
the (n ·k)-round r-confidence game from any position 〈~v, ~o, r〉,
for r ≤ 1

hn·|P−1(~v,~o)| . For what follows, fix arbitrary ~v ∈ I∗
and ~o ∈ O∗. For the base case, suppose that n = 0. Then any
position 〈~v, ~o, r〉 is a winning position for Attacker, for any
r ≤ 1

|P−1(~v,~o)| , by definition.
For the inductive case, notice that by definition, there is

a sequence ~w ∈ Ik, such that for any sequence ~q ∈ Ok,
|P−1(~v·~w,~o·~q)|
|P−1(~v,~o)| ≤ h. Let rw1

, rw2
, . . . , rwk

be functions that
conform to the allowed moves of Attacker. We will later define
the function rwk

, and its valuation will determine that of all
the other functions. It is worth noting again, that the choice of
each wi, for 0 < i ≤ k does not depend on the choice of qj ,
for j < i, from Defender, and Attacker needs to consider the
previous moves of Defender to determine the whole sequence
~w, only at the very beginning of these k rounds. By definition
of rwi

, for each 1 ≤ i < k, we know that

r =
∑
q1∈O

|P−1(~v·w1,~o·q1)|
|P−1(~v,~o)| · rw1(q1), and

rwi
(qi) =

∑
qi+1∈O

|P−1(~v·w1···wi+1,~o·q1···qi+1)|
|P−1(~v·w1···wi,~o·q1···qi)| · rwi+1

(qi+1).

Without being explicit in these expressions, we take the
sum over only those observations for which the respective
probability µ(q | w;~v, ~o) = |P−1(~v·w,~o·q)|

|P−1(~v,~o)| is non-zero. From
the equations above, it follows that

r =
∑
q1∈O

|P−1(~v·w1,~o·q1)|
|P−1(~v,~o)| ·∑

q2∈O
|P−1(~v·w1·w2,~o·q1·q2)|
|P−1(~v·w1,~o·q1)| ·

. . .∑
qk∈O

|P−1(~v·~w,~o·~q)|
|P−1(~v·w1···wk−1,~o·q1···qk−1)|rwk

(qk),



which is equal to

r =
∑
q1∈O

∑
q2∈O . . .

∑
qk∈O

|P−1(~v·~w,~o·~q)|
P−1(~v,~o) · rwk

(qk)

=
∑
~q∈Ok

|P−1(~v·~w,~o·~q)|
P−1(~v,~o) · rwk

(qk).
(5)

Without loss of generality, assume that r is equal to
1

hn·|P−1(~v,~o)| . Furthermore, define rwk
(qk) to be equal to

1
hn·|P−1(~v,~o)| . This valuation of rwk

conforms with Eq. 5, since
for any ~w ∈ Ik,

∑
~q∈Ok |P−1(~v · ~w,~o · ~q)| = |P−1(~v, ~o)| and

thus
∑
~q∈Ok

|P−1(~v·~w,~o·~q)|
|P−1(~v,~o)| = 1. Then, notice that

rwk
(qk) = 1

hn·|P−1(~v,~o)|
= 1

hn−1·h·|P−1(~v,~o)|
≤ 1

hn−1·|P−1(~v·~w,~o·~q)| ,

for any ~q ∈ Ok. Thus, by the inductive hypothesis, Attacker
wins the (n− 1) · k-round rwk

(qk)-confidence game from the
position 〈~v · ~w,~o · ~q, rwk

(qk)〉. Since this is the case for any
~q ∈ Ok, it follows that Attacker wins the n-round r-confidence
game from the position 〈~v, ~o, r〉.

Finally, by applying the induction statement, since
|P−1(ε, ε)| = |S`| = 2`, we have that Attacker can win the
game with n · k moves from 〈ε, ε, 1

hn·2` 〉.

Example V.2. Consider the program Pins from Section I,
i.e. the Leaky Login program in Fig. 1. This program has
a (1, 1

2 ) attack slope: let 〈~v, ~o, 1〉 be any position in the game.
Remember that O is a subset of N, where each observation
corresponds to the largest common prefix of the secret and the
input. Then, let o ∈ ~o, be the highest value, and let v ∈ ~v be
the input that generated that response. It follows that P−1(~v, ~o)
is the set of all secrets whose prefix of length o is equal to
the prefix of length o of v, but the next character in the secret
differs from the one in v. Then, let w be equal to the string
formed by flipping the (o + 1)-th character of v. Also let
rw(q) = 1, for all q ∈ O. Let q be any response of Defender
to w, and notice that any such response will at the very least
reveal the value of the (o+ 2)-th character of the secret. Thus
|P−1(~v·w,~o·q)|
|P−1(~v,~o)| is less than or equal to 1

2 . By Lemma V.1, Pins is
(n, 2n

2` )-insecure, and in particular it is (`, 1)-insecure, agreeing
with the statement of Proposition IV.2. N

Program Index Query
def indexQuery(secret, index):

return (secret[index-1] == 1)

Fig. 2: Index Query program

Example V.3. As a further example, we consider the simple
program IQ presented in Fig. 2, over public inputs I` =
{1, . . . , `} and observations {true, false}. On inputs s ∈ S`
and v ∈ I`, the program returns true if the v-th symbol of s is
1, and false otherwise. This is a trivially vulnerable program,
where the attacker simply has to query one index at a time to

gain information about all the bits of the secret s. The same
result can just as easily be established by showing that the
program has a ( 1

2 , 1) attack slope. Let ~v ∈ I∗ and ~o ∈ O∗ be
two sequences of public inputs and observations respectively,
of length less than `. Then let v′ be any natural less than `
that is not in the sequence ~v. It is not difficult to see that,
for any q ∈ O, |P

−1(~v·v′,~o·q)|
|P−1(~v,~o)| < 1

2 , as the v′-th bit of s is
undetermined before, and determined by feeding v′ as a public
input. This attack slope implies that IQ is (`, 1)-insecure. N

Defense Slope: Suppose a program P is such that there exists
h ∈ N, where for each ~v ∈ I∗ and ~o ∈ O∗ of the same
length, and for every w ∈ I, there exists qw ∈ O such that
|P−1(~v, ~o)| − |P−1(~v ·w,~o · qw)| < h. We call such a number
h, the defense slope for P . A defense slope of h, indicates that
Attacker, at each round can exclude at best a constant number
(bounded by h) of secrets.

Lemma V.4. Let P be a program with a defense slope h. Then
for all n ∈ N, P is (n, (n+2)h

2` )-secure.

Proof: We show by induction on n, that if P has a defense
slope h, then for any ~v ∈ I∗ and ~o ∈ O∗, Defender wins the
n-round game starting at position 〈~v, ~o, r〉, for r ≥ (n+2)h

|P−1(~v,~o)| .
This would imply that Defender wins the n-round game from
position 〈ε, ε, (n+2)h

2` 〉, and thus P is (n, (n+2)h
2` )-secure.

We note that h > 0 since |P−1(~v, ~o)| cannot be less than
|P−1(~v · w,~o · qw)|, and h is by assumption strictly larger
than the difference. For the base case, let n = 0. Then for
any position ~v ∈ I∗ and ~o ∈ O∗, Defender wins the 0-round
game if 1

|P−1(~v,~o)| < r which holds since r ≥ 2h
|P−1(~v,~o)| by

assumption, and h ∈ N+.
For the inductive case, suppose that for any w ∈ I, there

exists qw ∈ O, such that |P−1(~v, ~o)|− |P−1(~v ·w,~o ·qw)| < h.
Let w ∈ I be any choice of Attacker. By definition of a game,
Attacker has to chose a function rw : O → [0, 1], such that
r =

∑
q∈O

|P−1(~v·w,~o·q)|
|P−1(~v,~o)| · rw(qw). The latter is equal to∑

q∈O\{qw}
|P−1(~v·w,~o·q)|
|P−1(~v,~o)| · rw(q) + |P−1(~v·w,~o·qw)|

|P−1(~v,~o)| · rw(qw)

Let R be equal to maxq∈O\{qw} rw(q). Then

r ≤ ∑
q∈O\{qw}

|P−1(~v·w,~o·q)|
|P−1(~v,~o)| ·R+ |P−1(~v·w,~o·qw)|

|P−1(~v,~o)| · rw(qw)

= R
|P−1(~v,~o)| · (

∑
q∈O\{qw} |P−1(~v · w,~o · q)|)

+ |P
−1(~v·w,~o·qw)|
|P−1(~v,~o)| · rw(qw).

Notice that
∑
q∈O\{qw} |P−1(~v · w,~o · q)| = |P−1(~v, ~o)| −

|P−1(~v · w,~o · qw)|, and hence, by assumption, the latter is
strictly less than

R
|P−1(~v,~o)| · h+ |P−1(~v·w,~o·qw)|

|P−1(~v,~o)| · rw(qw).

By assumption r ≥ (n+2)h
|P−1(~v,~o)| , and thus it follows that

(n+ 2)h < R · h+ |P−1(~v · w,~o · qw)| · rw(qw).

which implies that

rw(qw) > (n+2)h−R·h
|P−1(~v·w,~o·qw)| .



Furthermore, R ≤ 1, and hence

rw(qw) > (n+1)·h
|P−1(~v·w,~o·qw)| .

By the inductive hypothesis, Defender wins the (n − 1)-
round game from position 〈~v, ~o, rw(qw)〉, which completes
the argument.

It is worth mentioning that the definition of defense slope
does not put any constraints on the function rw : O → [0, 1]
selected at each round by Attacker.

Example V.5. Let Psec be the program from Section I. This
program has a defense slope of 2: let ~v ∈ I∗ and ~o ∈ O∗.
For any w ∈ I, let qw = false. Then |P−1(~v, ~o)| − |P−1(~v ·
w,~o · false)| < 2 since the only secret excluded is the one
equal to w. Then Lemma V.4 says that Psec is, for example,
(2`−2, 2`−1+4

2` )-secure. For ` > 2, 1 ≥ 2`−1+4
2` , and therefore

it follows that Psec is even (2`−2, 1)-secure. In other words,
even with 2`−2 moves, Attacker cannot know with absolute
certainty what the secret is. N

While defense slopes provide sound bound on security, it
is incomplete. That is, secure programs do not need to have a
strong defense slope in general. The intuition is that sometimes
a steep slope may be achievable for a restricted number of
moves and then flatten as the game proceeds. This is illustrated
with the next example.

Example V.6. Let Ppar(s, v), be the program, that for any
input v ∈ I, it returns the parity of 1’s in s. Since the output
and observation of Ppar does not depend on the public input,
all the information Attacker can gain from this program is
whether the number of 1’s in the secret is even or odd, and
additional queries to the program will not provide any more
information. Thus, for any ε > 1

2 and any f > 1, Ppar is
(f, ε)-secure. For large enough ` it is then (`, (`+2)·2

2` )-secure,
but notice that it does not have a defense slope of 2. This is
because O = {0, 1} has exactly two values corresponding to
the parity of s. No matter what input w we feed initially to
the program, and no matter which of the two parities qw we
observe, the size of |P−1(w, qw)| will be half the size of all
secrets. Clearly |P−1(ε, ε)| − |P−1(w, qw)| ≥ 2, and thus the
defense slope of Ppar is not 2. N

Conversely, an insecure program may not necessarily have
a steep attack slope. That could happen when after some
sequences ~v ∈ I and ~o ∈ O, there is not always a sequence of
moves ~w ∈ I by Attacker that for any response ~q ∈ O would
cause the sets P−1(~v·~w,~o·~q)

P−1(~v,~o) to be less than a slope h, but later
moves may compensate for that with a slope even steeper than
h. This problem can sometimes be alleviated by reasoning over
a sequence of k moves ~w ∈ Ik and ~q ∈ Ok as the definition
of attack slope allows.

We conclude this section with a small remark about the
restriction of these approximations on deterministic programs
over uniform distributions of secrets. Both the attack and
defense slopes depend on measuring in a combinatorial
way the amount of change in knowledge Attacker has after

successive moves. For deterministic systems with uniform
distributions, this amounts to measuring how many secrets
are still possible under the sequence of observations from
multiple executions of the program under attack. When the
programs are probabilistic, or in other words there is a non-
trivial probability distribution over the observations, given a
public input and a secret, comparisons between distributions
over the secrets is not immediate. There is no direct way of
comparing two distributions over the secrets and determining
that one corresponds to “better” knowledge than the other
without actually playing the game. It is not clear how to
compare even two distributions where the support of one is
strictly larger than the support of the other.

VI. REDUCTIONS

In this section we present a way of reducing a game strategy
on one program to that of another. Calculating the optimal
strategy for one of the two players in a game hinges on a
sequence of alternations in optimizations, resulting in high
complexity. As such, taking advantage of an existing strategy
for a game to produce one for a new game in a new setting
is highly desirable, especially if such a reduction depends on
mapping each level of alternations of one game to one level,
or a bounded number of levels of the other. Such reasoning is
inherently more local, and is computationally more efficient.

The general idea behind a reduction from a program P1 to
a program P2 is as follows. Suppose that it has already been
established that Attacker has a winning strategy on P2 for the
game with some number of rounds n and confidence r. To
establish a similar Attacker strategy for P1, we check what
move the unbeatable Attacker on P2 would make, and use the
mapping Φ to make a corresponding move on the P1 game.
Then for any response by Defender on that game on P1, we use
the mapping Ω to make a Defender response move back on the
game on P2. Since we know that Attacker on P2 is unbeatable,
and assuming the conditions for the mappings Φ, Ψ and Ω
hold, we can deduce that Attacker can also win the game on
P1. See Fig. 3 for a depiction. We remark that a reduction
from a secure program P1 to a program P2 establishes security
of the latter, while a reduction of a program P2 to an insecure
program P1 establishes that P2 is insecure. Thus, the reduction
can be used for both proving and disproving security.

Let P be a program defined over a set of secrets S with a
probability distribution µS , a set of public inputs I and a set of
observations O determined by the probability distribution µO.
Namely for any s ∈ S and v ∈ I , the probability of observing
o ∈ O is given by µO(o | s, v). We denote this using the tuple
P = (S, I,O, µS , µO). For ~v ∈ I∗ and ~o ∈ O∗, we define
µ

(~v,~o)
S to be the probability distribution that maps every s ∈ S

to µS(s | ~v, ~o).
Let P1 be the program defined by (S1, I1,O1, µS1 , µO1

)
and P2 be the program defined by (S2, I2,O2, µS2 , µO2

). Let
Ξ = (Ψ,Φ,Ω) be a tuple of mappings of type:

Φ : I2 → I1

Ψ : S2 → S1, that is injective and total,
Ω : O1 × I2 → O2.



P1
<latexit sha1_base64="XzX9zonNLpN8S6XOHGgbXima59M=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLRjDxRFoueiR68YiJBRNoyHaZwobtttndmpCG3+DFg8Z49Qd589+4QA8KvmSSl/dmMjMvTAXXxnW/ndLG5tb2Tnm3srd/cHhUPT7p6CRTDH2WiEQ9hlSj4BJ9w43Ax1QhjUOB3XByO/e7T6g0T+SDmaYYxHQkecQZNVby6+2BVx9Ua27DXYCsE68gNSjQHlS/+sOEZTFKwwTVuue5qQlyqgxnAmeVfqYxpWxCR9izVNIYdZAvjp2RC6sMSZQoW9KQhfp7Iqex1tM4tJ0xNWO96s3F/7xeZqLrIOcyzQxKtlwUZYKYhMw/J0OukBkxtYQyxe2thI2poszYfCo2BG/15XXSaTY8t+HdN2utmyKOMpzBOVyCB1fQgjtogw8MODzDK7w50nlx3p2PZWvJKWZO4Q+czx+Ggo3S</latexit><latexit sha1_base64="XzX9zonNLpN8S6XOHGgbXima59M=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLRjDxRFoueiR68YiJBRNoyHaZwobtttndmpCG3+DFg8Z49Qd589+4QA8KvmSSl/dmMjMvTAXXxnW/ndLG5tb2Tnm3srd/cHhUPT7p6CRTDH2WiEQ9hlSj4BJ9w43Ax1QhjUOB3XByO/e7T6g0T+SDmaYYxHQkecQZNVby6+2BVx9Ua27DXYCsE68gNSjQHlS/+sOEZTFKwwTVuue5qQlyqgxnAmeVfqYxpWxCR9izVNIYdZAvjp2RC6sMSZQoW9KQhfp7Iqex1tM4tJ0xNWO96s3F/7xeZqLrIOcyzQxKtlwUZYKYhMw/J0OukBkxtYQyxe2thI2poszYfCo2BG/15XXSaTY8t+HdN2utmyKOMpzBOVyCB1fQgjtogw8MODzDK7w50nlx3p2PZWvJKWZO4Q+czx+Ggo3S</latexit><latexit sha1_base64="XzX9zonNLpN8S6XOHGgbXima59M=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLRjDxRFoueiR68YiJBRNoyHaZwobtttndmpCG3+DFg8Z49Qd589+4QA8KvmSSl/dmMjMvTAXXxnW/ndLG5tb2Tnm3srd/cHhUPT7p6CRTDH2WiEQ9hlSj4BJ9w43Ax1QhjUOB3XByO/e7T6g0T+SDmaYYxHQkecQZNVby6+2BVx9Ua27DXYCsE68gNSjQHlS/+sOEZTFKwwTVuue5qQlyqgxnAmeVfqYxpWxCR9izVNIYdZAvjp2RC6sMSZQoW9KQhfp7Iqex1tM4tJ0xNWO96s3F/7xeZqLrIOcyzQxKtlwUZYKYhMw/J0OukBkxtYQyxe2thI2poszYfCo2BG/15XXSaTY8t+HdN2utmyKOMpzBOVyCB1fQgjtogw8MODzDK7w50nlx3p2PZWvJKWZO4Q+czx+Ggo3S</latexit><latexit sha1_base64="XzX9zonNLpN8S6XOHGgbXima59M=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLRjDxRFoueiR68YiJBRNoyHaZwobtttndmpCG3+DFg8Z49Qd589+4QA8KvmSSl/dmMjMvTAXXxnW/ndLG5tb2Tnm3srd/cHhUPT7p6CRTDH2WiEQ9hlSj4BJ9w43Ax1QhjUOB3XByO/e7T6g0T+SDmaYYxHQkecQZNVby6+2BVx9Ua27DXYCsE68gNSjQHlS/+sOEZTFKwwTVuue5qQlyqgxnAmeVfqYxpWxCR9izVNIYdZAvjp2RC6sMSZQoW9KQhfp7Iqex1tM4tJ0xNWO96s3F/7xeZqLrIOcyzQxKtlwUZYKYhMw/J0OukBkxtYQyxe2thI2poszYfCo2BG/15XXSaTY8t+HdN2utmyKOMpzBOVyCB1fQgjtogw8MODzDK7w50nlx3p2PZWvJKWZO4Q+czx+Ggo3S</latexit>

P2
<latexit sha1_base64="01zXljcbSlm0zBow6Z8N6WtYslw=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLRjDxRFoueiR68YiJBRNoyHaZwobtttndmpCG3+DFg8Z49Qd589+4QA8KvmSSl/dmMjMvTAXXxnW/ndLG5tb2Tnm3srd/cHhUPT7p6CRTDH2WiEQ9hlSj4BJ9w43Ax1QhjUOB3XByO/e7T6g0T+SDmaYYxHQkecQZNVby6+1Bsz6o1tyGuwBZJ15BalCgPah+9YcJy2KUhgmqdc9zUxPkVBnOBM4q/UxjStmEjrBnqaQx6iBfHDsjF1YZkihRtqQhC/X3RE5jradxaDtjasZ61ZuL/3m9zETXQc5lmhmUbLkoygQxCZl/ToZcITNiagllittbCRtTRZmx+VRsCN7qy+uk02x4bsO7b9ZaN0UcZTiDc7gED66gBXfQBh8YcHiGV3hzpPPivDsfy9aSU8ycwh84nz+IB43T</latexit><latexit sha1_base64="01zXljcbSlm0zBow6Z8N6WtYslw=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLRjDxRFoueiR68YiJBRNoyHaZwobtttndmpCG3+DFg8Z49Qd589+4QA8KvmSSl/dmMjMvTAXXxnW/ndLG5tb2Tnm3srd/cHhUPT7p6CRTDH2WiEQ9hlSj4BJ9w43Ax1QhjUOB3XByO/e7T6g0T+SDmaYYxHQkecQZNVby6+1Bsz6o1tyGuwBZJ15BalCgPah+9YcJy2KUhgmqdc9zUxPkVBnOBM4q/UxjStmEjrBnqaQx6iBfHDsjF1YZkihRtqQhC/X3RE5jradxaDtjasZ61ZuL/3m9zETXQc5lmhmUbLkoygQxCZl/ToZcITNiagllittbCRtTRZmx+VRsCN7qy+uk02x4bsO7b9ZaN0UcZTiDc7gED66gBXfQBh8YcHiGV3hzpPPivDsfy9aSU8ycwh84nz+IB43T</latexit><latexit sha1_base64="01zXljcbSlm0zBow6Z8N6WtYslw=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLRjDxRFoueiR68YiJBRNoyHaZwobtttndmpCG3+DFg8Z49Qd589+4QA8KvmSSl/dmMjMvTAXXxnW/ndLG5tb2Tnm3srd/cHhUPT7p6CRTDH2WiEQ9hlSj4BJ9w43Ax1QhjUOB3XByO/e7T6g0T+SDmaYYxHQkecQZNVby6+1Bsz6o1tyGuwBZJ15BalCgPah+9YcJy2KUhgmqdc9zUxPkVBnOBM4q/UxjStmEjrBnqaQx6iBfHDsjF1YZkihRtqQhC/X3RE5jradxaDtjasZ61ZuL/3m9zETXQc5lmhmUbLkoygQxCZl/ToZcITNiagllittbCRtTRZmx+VRsCN7qy+uk02x4bsO7b9ZaN0UcZTiDc7gED66gBXfQBh8YcHiGV3hzpPPivDsfy9aSU8ycwh84nz+IB43T</latexit><latexit sha1_base64="01zXljcbSlm0zBow6Z8N6WtYslw=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLRjDxRFoueiR68YiJBRNoyHaZwobtttndmpCG3+DFg8Z49Qd589+4QA8KvmSSl/dmMjMvTAXXxnW/ndLG5tb2Tnm3srd/cHhUPT7p6CRTDH2WiEQ9hlSj4BJ9w43Ax1QhjUOB3XByO/e7T6g0T+SDmaYYxHQkecQZNVby6+1Bsz6o1tyGuwBZJ15BalCgPah+9YcJy2KUhgmqdc9zUxPkVBnOBM4q/UxjStmEjrBnqaQx6iBfHDsjF1YZkihRtqQhC/X3RE5jradxaDtjasZ61ZuL/3m9zETXQc5lmhmUbLkoygQxCZl/ToZcITNiagllittbCRtTRZmx+VRsCN7qy+uk02x4bsO7b9ZaN0UcZTiDc7gED66gBXfQBh8YcHiGV3hzpPPivDsfy9aSU8ycwh84nz+IB43T</latexit>

I2<latexit sha1_base64="MYKhGO6v5V5p8ZLMS8nKoo751Ug=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M9gKrkrSja6k4EZ3FewD2hAm00k7dDIJMxOhhn6JGxeKuPVT3Pk3TtostPXAwOGce7lnTpBwprTjfFuljc2t7Z3ybmVv/+Cwah8dd1WcSkI7JOax7AdYUc4E7WimOe0nkuIo4LQXTG9yv/dIpWKxeNCzhHoRHgsWMoK1kXy7Wh9GWE8I5tnd3G/WfbvmNJwF0DpxC1KDAm3f/hqOYpJGVGjCsVID10m0l2GpGeF0XhmmiiaYTPGYDgwVOKLKyxbB5+jcKCMUxtI8odFC/b2R4UipWRSYyTylWvVy8T9vkOrwysuYSFJNBVkeClOOdIzyFtCISUo0nxmCiWQmKyITLDHRpquKKcFd/fI66TYbrtNw75u11nVRRxlO4QwuwIVLaMEttKEDBFJ4hld4s56sF+vd+liOlqxi5wT+wPr8Ad+Skos=</latexit><latexit sha1_base64="MYKhGO6v5V5p8ZLMS8nKoo751Ug=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M9gKrkrSja6k4EZ3FewD2hAm00k7dDIJMxOhhn6JGxeKuPVT3Pk3TtostPXAwOGce7lnTpBwprTjfFuljc2t7Z3ybmVv/+Cwah8dd1WcSkI7JOax7AdYUc4E7WimOe0nkuIo4LQXTG9yv/dIpWKxeNCzhHoRHgsWMoK1kXy7Wh9GWE8I5tnd3G/WfbvmNJwF0DpxC1KDAm3f/hqOYpJGVGjCsVID10m0l2GpGeF0XhmmiiaYTPGYDgwVOKLKyxbB5+jcKCMUxtI8odFC/b2R4UipWRSYyTylWvVy8T9vkOrwysuYSFJNBVkeClOOdIzyFtCISUo0nxmCiWQmKyITLDHRpquKKcFd/fI66TYbrtNw75u11nVRRxlO4QwuwIVLaMEttKEDBFJ4hld4s56sF+vd+liOlqxi5wT+wPr8Ad+Skos=</latexit><latexit sha1_base64="MYKhGO6v5V5p8ZLMS8nKoo751Ug=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M9gKrkrSja6k4EZ3FewD2hAm00k7dDIJMxOhhn6JGxeKuPVT3Pk3TtostPXAwOGce7lnTpBwprTjfFuljc2t7Z3ybmVv/+Cwah8dd1WcSkI7JOax7AdYUc4E7WimOe0nkuIo4LQXTG9yv/dIpWKxeNCzhHoRHgsWMoK1kXy7Wh9GWE8I5tnd3G/WfbvmNJwF0DpxC1KDAm3f/hqOYpJGVGjCsVID10m0l2GpGeF0XhmmiiaYTPGYDgwVOKLKyxbB5+jcKCMUxtI8odFC/b2R4UipWRSYyTylWvVy8T9vkOrwysuYSFJNBVkeClOOdIzyFtCISUo0nxmCiWQmKyITLDHRpquKKcFd/fI66TYbrtNw75u11nVRRxlO4QwuwIVLaMEttKEDBFJ4hld4s56sF+vd+liOlqxi5wT+wPr8Ad+Skos=</latexit><latexit sha1_base64="MYKhGO6v5V5p8ZLMS8nKoo751Ug=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M9gKrkrSja6k4EZ3FewD2hAm00k7dDIJMxOhhn6JGxeKuPVT3Pk3TtostPXAwOGce7lnTpBwprTjfFuljc2t7Z3ybmVv/+Cwah8dd1WcSkI7JOax7AdYUc4E7WimOe0nkuIo4LQXTG9yv/dIpWKxeNCzhHoRHgsWMoK1kXy7Wh9GWE8I5tnd3G/WfbvmNJwF0DpxC1KDAm3f/hqOYpJGVGjCsVID10m0l2GpGeF0XhmmiiaYTPGYDgwVOKLKyxbB5+jcKCMUxtI8odFC/b2R4UipWRSYyTylWvVy8T9vkOrwysuYSFJNBVkeClOOdIzyFtCISUo0nxmCiWQmKyITLDHRpquKKcFd/fI66TYbrtNw75u11nVRRxlO4QwuwIVLaMEttKEDBFJ4hld4s56sF+vd+liOlqxi5wT+wPr8Ad+Skos=</latexit>

I1<latexit sha1_base64="mP6cgE/eRwJhMFG2N2xSgZnPjbM=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M9gKrkrSja6k4EZ3FewD2hAm00k7dDIJMxOhhn6JGxeKuPVT3Pk3TtostPXAwOGce7lnTpBwprTjfFuljc2t7Z3ybmVv/+Cwah8dd1WcSkI7JOax7AdYUc4E7WimOe0nkuIo4LQXTG9yv/dIpWKxeNCzhHoRHgsWMoK1kXy7Wh9GWE8I5tnd3Hfrvl1zGs4CaJ24BalBgbZvfw1HMUkjKjThWKmB6yTay7DUjHA6rwxTRRNMpnhMB4YKHFHlZYvgc3RulBEKY2me0Gih/t7IcKTULArMZJ5SrXq5+J83SHV45WVMJKmmgiwPhSlHOkZ5C2jEJCWazwzBRDKTFZEJlpho01XFlOCufnmddJsN12m4981a67qoowyncAYX4MIltOAW2tABAik8wyu8WU/Wi/VufSxHS1axcwJ/YH3+AN4Nkoo=</latexit><latexit sha1_base64="mP6cgE/eRwJhMFG2N2xSgZnPjbM=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M9gKrkrSja6k4EZ3FewD2hAm00k7dDIJMxOhhn6JGxeKuPVT3Pk3TtostPXAwOGce7lnTpBwprTjfFuljc2t7Z3ybmVv/+Cwah8dd1WcSkI7JOax7AdYUc4E7WimOe0nkuIo4LQXTG9yv/dIpWKxeNCzhHoRHgsWMoK1kXy7Wh9GWE8I5tnd3Hfrvl1zGs4CaJ24BalBgbZvfw1HMUkjKjThWKmB6yTay7DUjHA6rwxTRRNMpnhMB4YKHFHlZYvgc3RulBEKY2me0Gih/t7IcKTULArMZJ5SrXq5+J83SHV45WVMJKmmgiwPhSlHOkZ5C2jEJCWazwzBRDKTFZEJlpho01XFlOCufnmddJsN12m4981a67qoowyncAYX4MIltOAW2tABAik8wyu8WU/Wi/VufSxHS1axcwJ/YH3+AN4Nkoo=</latexit><latexit sha1_base64="mP6cgE/eRwJhMFG2N2xSgZnPjbM=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M9gKrkrSja6k4EZ3FewD2hAm00k7dDIJMxOhhn6JGxeKuPVT3Pk3TtostPXAwOGce7lnTpBwprTjfFuljc2t7Z3ybmVv/+Cwah8dd1WcSkI7JOax7AdYUc4E7WimOe0nkuIo4LQXTG9yv/dIpWKxeNCzhHoRHgsWMoK1kXy7Wh9GWE8I5tnd3Hfrvl1zGs4CaJ24BalBgbZvfw1HMUkjKjThWKmB6yTay7DUjHA6rwxTRRNMpnhMB4YKHFHlZYvgc3RulBEKY2me0Gih/t7IcKTULArMZJ5SrXq5+J83SHV45WVMJKmmgiwPhSlHOkZ5C2jEJCWazwzBRDKTFZEJlpho01XFlOCufnmddJsN12m4981a67qoowyncAYX4MIltOAW2tABAik8wyu8WU/Wi/VufSxHS1axcwJ/YH3+AN4Nkoo=</latexit><latexit sha1_base64="mP6cgE/eRwJhMFG2N2xSgZnPjbM=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M9gKrkrSja6k4EZ3FewD2hAm00k7dDIJMxOhhn6JGxeKuPVT3Pk3TtostPXAwOGce7lnTpBwprTjfFuljc2t7Z3ybmVv/+Cwah8dd1WcSkI7JOax7AdYUc4E7WimOe0nkuIo4LQXTG9yv/dIpWKxeNCzhHoRHgsWMoK1kXy7Wh9GWE8I5tnd3Hfrvl1zGs4CaJ24BalBgbZvfw1HMUkjKjThWKmB6yTay7DUjHA6rwxTRRNMpnhMB4YKHFHlZYvgc3RulBEKY2me0Gih/t7IcKTULArMZJ5SrXq5+J83SHV45WVMJKmmgiwPhSlHOkZ5C2jEJCWazwzBRDKTFZEJlpho01XFlOCufnmddJsN12m4981a67qoowyncAYX4MIltOAW2tABAik8wyu8WU/Wi/VufSxHS1axcwJ/YH3+AN4Nkoo=</latexit>

O1<latexit sha1_base64="430nXJRwuEw5kxVmIbon1anGO0E=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M9gKrkrSja6k4MadFewD2hAm00k7dDIJMxOhhn6JGxeKuPVT3Pk3TtostPXAwOGce7lnTpBwprTjfFuljc2t7Z3ybmVv/+Cwah8dd1WcSkI7JOax7AdYUc4E7WimOe0nkuIo4LQXTG9yv/dIpWKxeNCzhHoRHgsWMoK1kXy7Wh9GWE8I5tnd3Hfrvl1zGs4CaJ24BalBgbZvfw1HMUkjKjThWKmB6yTay7DUjHA6rwxTRRNMpnhMB4YKHFHlZYvgc3RulBEKY2me0Gih/t7IcKTULArMZJ5SrXq5+J83SHV45WVMJKmmgiwPhSlHOkZ5C2jEJCWazwzBRDKTFZEJlpho01XFlOCufnmddJsN12m4981a67qoowyncAYX4MIltOAW2tABAik8wyu8WU/Wi/VufSxHS1axcwJ/YH3+AOc9kpA=</latexit><latexit sha1_base64="430nXJRwuEw5kxVmIbon1anGO0E=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M9gKrkrSja6k4MadFewD2hAm00k7dDIJMxOhhn6JGxeKuPVT3Pk3TtostPXAwOGce7lnTpBwprTjfFuljc2t7Z3ybmVv/+Cwah8dd1WcSkI7JOax7AdYUc4E7WimOe0nkuIo4LQXTG9yv/dIpWKxeNCzhHoRHgsWMoK1kXy7Wh9GWE8I5tnd3Hfrvl1zGs4CaJ24BalBgbZvfw1HMUkjKjThWKmB6yTay7DUjHA6rwxTRRNMpnhMB4YKHFHlZYvgc3RulBEKY2me0Gih/t7IcKTULArMZJ5SrXq5+J83SHV45WVMJKmmgiwPhSlHOkZ5C2jEJCWazwzBRDKTFZEJlpho01XFlOCufnmddJsN12m4981a67qoowyncAYX4MIltOAW2tABAik8wyu8WU/Wi/VufSxHS1axcwJ/YH3+AOc9kpA=</latexit><latexit sha1_base64="430nXJRwuEw5kxVmIbon1anGO0E=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M9gKrkrSja6k4MadFewD2hAm00k7dDIJMxOhhn6JGxeKuPVT3Pk3TtostPXAwOGce7lnTpBwprTjfFuljc2t7Z3ybmVv/+Cwah8dd1WcSkI7JOax7AdYUc4E7WimOe0nkuIo4LQXTG9yv/dIpWKxeNCzhHoRHgsWMoK1kXy7Wh9GWE8I5tnd3Hfrvl1zGs4CaJ24BalBgbZvfw1HMUkjKjThWKmB6yTay7DUjHA6rwxTRRNMpnhMB4YKHFHlZYvgc3RulBEKY2me0Gih/t7IcKTULArMZJ5SrXq5+J83SHV45WVMJKmmgiwPhSlHOkZ5C2jEJCWazwzBRDKTFZEJlpho01XFlOCufnmddJsN12m4981a67qoowyncAYX4MIltOAW2tABAik8wyu8WU/Wi/VufSxHS1axcwJ/YH3+AOc9kpA=</latexit><latexit sha1_base64="430nXJRwuEw5kxVmIbon1anGO0E=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M9gKrkrSja6k4MadFewD2hAm00k7dDIJMxOhhn6JGxeKuPVT3Pk3TtostPXAwOGce7lnTpBwprTjfFuljc2t7Z3ybmVv/+Cwah8dd1WcSkI7JOax7AdYUc4E7WimOe0nkuIo4LQXTG9yv/dIpWKxeNCzhHoRHgsWMoK1kXy7Wh9GWE8I5tnd3Hfrvl1zGs4CaJ24BalBgbZvfw1HMUkjKjThWKmB6yTay7DUjHA6rwxTRRNMpnhMB4YKHFHlZYvgc3RulBEKY2me0Gih/t7IcKTULArMZJ5SrXq5+J83SHV45WVMJKmmgiwPhSlHOkZ5C2jEJCWazwzBRDKTFZEJlpho01XFlOCufnmddJsN12m4981a67qoowyncAYX4MIltOAW2tABAik8wyu8WU/Wi/VufSxHS1axcwJ/YH3+AOc9kpA=</latexit>

O2<latexit sha1_base64="8Ax67XEhDUcqEFkJfDV423zKZnc=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M9gKrkrSja6k4MadFewD2hAm00k7dDIJMxOhhn6JGxeKuPVT3Pk3TtostPXAwOGce7lnTpBwprTjfFuljc2t7Z3ybmVv/+Cwah8dd1WcSkI7JOax7AdYUc4E7WimOe0nkuIo4LQXTG9yv/dIpWKxeNCzhHoRHgsWMoK1kXy7Wh9GWE8I5tnd3G/WfbvmNJwF0DpxC1KDAm3f/hqOYpJGVGjCsVID10m0l2GpGeF0XhmmiiaYTPGYDgwVOKLKyxbB5+jcKCMUxtI8odFC/b2R4UipWRSYyTylWvVy8T9vkOrwysuYSFJNBVkeClOOdIzyFtCISUo0nxmCiWQmKyITLDHRpquKKcFd/fI66TYbrtNw75u11nVRRxlO4QwuwIVLaMEttKEDBFJ4hld4s56sF+vd+liOlqxi5wT+wPr8AejCkpE=</latexit><latexit sha1_base64="8Ax67XEhDUcqEFkJfDV423zKZnc=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M9gKrkrSja6k4MadFewD2hAm00k7dDIJMxOhhn6JGxeKuPVT3Pk3TtostPXAwOGce7lnTpBwprTjfFuljc2t7Z3ybmVv/+Cwah8dd1WcSkI7JOax7AdYUc4E7WimOe0nkuIo4LQXTG9yv/dIpWKxeNCzhHoRHgsWMoK1kXy7Wh9GWE8I5tnd3G/WfbvmNJwF0DpxC1KDAm3f/hqOYpJGVGjCsVID10m0l2GpGeF0XhmmiiaYTPGYDgwVOKLKyxbB5+jcKCMUxtI8odFC/b2R4UipWRSYyTylWvVy8T9vkOrwysuYSFJNBVkeClOOdIzyFtCISUo0nxmCiWQmKyITLDHRpquKKcFd/fI66TYbrtNw75u11nVRRxlO4QwuwIVLaMEttKEDBFJ4hld4s56sF+vd+liOlqxi5wT+wPr8AejCkpE=</latexit><latexit sha1_base64="8Ax67XEhDUcqEFkJfDV423zKZnc=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M9gKrkrSja6k4MadFewD2hAm00k7dDIJMxOhhn6JGxeKuPVT3Pk3TtostPXAwOGce7lnTpBwprTjfFuljc2t7Z3ybmVv/+Cwah8dd1WcSkI7JOax7AdYUc4E7WimOe0nkuIo4LQXTG9yv/dIpWKxeNCzhHoRHgsWMoK1kXy7Wh9GWE8I5tnd3G/WfbvmNJwF0DpxC1KDAm3f/hqOYpJGVGjCsVID10m0l2GpGeF0XhmmiiaYTPGYDgwVOKLKyxbB5+jcKCMUxtI8odFC/b2R4UipWRSYyTylWvVy8T9vkOrwysuYSFJNBVkeClOOdIzyFtCISUo0nxmCiWQmKyITLDHRpquKKcFd/fI66TYbrtNw75u11nVRRxlO4QwuwIVLaMEttKEDBFJ4hld4s56sF+vd+liOlqxi5wT+wPr8AejCkpE=</latexit><latexit sha1_base64="8Ax67XEhDUcqEFkJfDV423zKZnc=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M9gKrkrSja6k4MadFewD2hAm00k7dDIJMxOhhn6JGxeKuPVT3Pk3TtostPXAwOGce7lnTpBwprTjfFuljc2t7Z3ybmVv/+Cwah8dd1WcSkI7JOax7AdYUc4E7WimOe0nkuIo4LQXTG9yv/dIpWKxeNCzhHoRHgsWMoK1kXy7Wh9GWE8I5tnd3G/WfbvmNJwF0DpxC1KDAm3f/hqOYpJGVGjCsVID10m0l2GpGeF0XhmmiiaYTPGYDgwVOKLKyxbB5+jcKCMUxtI8odFC/b2R4UipWRSYyTylWvVy8T9vkOrwysuYSFJNBVkeClOOdIzyFtCISUo0nxmCiWQmKyITLDHRpquKKcFd/fI66TYbrtNw75u11nVRRxlO4QwuwIVLaMEttKEDBFJ4hld4s56sF+vd+liOlqxi5wT+wPr8AejCkpE=</latexit>

S2<latexit sha1_base64="4nfuavVU+PqRvIxOBrH+n6IhDdY=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSBSZUiYWxCPqQ2ihyXKe16jiR7SCVqF/CwgBCrHwKG3+D02aAliNZOjrnXt3jEyScKe0431ZpY3Nre6e8W9nbPzis2kfHXRWnktAOiXks+wFWlDNBO5ppTvuJpDgKOO0F05vc7z1SqVgsHvQsoV6Ex4KFjGBtJN+u1ocR1hOCeXY/95t13645DWcBtE7cgtSgQNu3v4ajmKQRFZpwrNTAdRLtZVhqRjidV4apogkmUzymA0MFjqjyskXwOTo3ygiFsTRPaLRQf29kOFJqFgVmMk+pVr1c/M8bpDq88jImklRTQZaHwpQjHaO8BTRikhLNZ4ZgIpnJisgES0y06apiSnBXv7xOus2G6zTcu2atdV3UUYZTOIMLcOESWnALbegAgRSe4RXerCfrxXq3PpajJavYOYE/sD5/AO7ikpU=</latexit><latexit sha1_base64="4nfuavVU+PqRvIxOBrH+n6IhDdY=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSBSZUiYWxCPqQ2ihyXKe16jiR7SCVqF/CwgBCrHwKG3+D02aAliNZOjrnXt3jEyScKe0431ZpY3Nre6e8W9nbPzis2kfHXRWnktAOiXks+wFWlDNBO5ppTvuJpDgKOO0F05vc7z1SqVgsHvQsoV6Ex4KFjGBtJN+u1ocR1hOCeXY/95t13645DWcBtE7cgtSgQNu3v4ajmKQRFZpwrNTAdRLtZVhqRjidV4apogkmUzymA0MFjqjyskXwOTo3ygiFsTRPaLRQf29kOFJqFgVmMk+pVr1c/M8bpDq88jImklRTQZaHwpQjHaO8BTRikhLNZ4ZgIpnJisgES0y06apiSnBXv7xOus2G6zTcu2atdV3UUYZTOIMLcOESWnALbegAgRSe4RXerCfrxXq3PpajJavYOYE/sD5/AO7ikpU=</latexit><latexit sha1_base64="4nfuavVU+PqRvIxOBrH+n6IhDdY=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSBSZUiYWxCPqQ2ihyXKe16jiR7SCVqF/CwgBCrHwKG3+D02aAliNZOjrnXt3jEyScKe0431ZpY3Nre6e8W9nbPzis2kfHXRWnktAOiXks+wFWlDNBO5ppTvuJpDgKOO0F05vc7z1SqVgsHvQsoV6Ex4KFjGBtJN+u1ocR1hOCeXY/95t13645DWcBtE7cgtSgQNu3v4ajmKQRFZpwrNTAdRLtZVhqRjidV4apogkmUzymA0MFjqjyskXwOTo3ygiFsTRPaLRQf29kOFJqFgVmMk+pVr1c/M8bpDq88jImklRTQZaHwpQjHaO8BTRikhLNZ4ZgIpnJisgES0y06apiSnBXv7xOus2G6zTcu2atdV3UUYZTOIMLcOESWnALbegAgRSe4RXerCfrxXq3PpajJavYOYE/sD5/AO7ikpU=</latexit><latexit sha1_base64="4nfuavVU+PqRvIxOBrH+n6IhDdY=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSBSZUiYWxCPqQ2ihyXKe16jiR7SCVqF/CwgBCrHwKG3+D02aAliNZOjrnXt3jEyScKe0431ZpY3Nre6e8W9nbPzis2kfHXRWnktAOiXks+wFWlDNBO5ppTvuJpDgKOO0F05vc7z1SqVgsHvQsoV6Ex4KFjGBtJN+u1ocR1hOCeXY/95t13645DWcBtE7cgtSgQNu3v4ajmKQRFZpwrNTAdRLtZVhqRjidV4apogkmUzymA0MFjqjyskXwOTo3ygiFsTRPaLRQf29kOFJqFgVmMk+pVr1c/M8bpDq88jImklRTQZaHwpQjHaO8BTRikhLNZ4ZgIpnJisgES0y06apiSnBXv7xOus2G6zTcu2atdV3UUYZTOIMLcOESWnALbegAgRSe4RXerCfrxXq3PpajJavYOYE/sD5/AO7ikpU=</latexit>

S1<latexit sha1_base64="YPdX4MC01IfpYclDQWBRpGmveCY=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSBSZUiYWxCPqQ2ihyXKe16jiR7SCVqF/CwgBCrHwKG3+D02aAliNZOjrnXt3jEyScKe0431ZpY3Nre6e8W9nbPzis2kfHXRWnktAOiXks+wFWlDNBO5ppTvuJpDgKOO0F05vc7z1SqVgsHvQsoV6Ex4KFjGBtJN+u1ocR1hOCeXY/9926b9echrMAWiduQWpQoO3bX8NRTNKICk04VmrgOon2Miw1I5zOK8NU0QSTKR7TgaECR1R52SL4HJ0bZYTCWJonNFqovzcyHCk1iwIzmadUq14u/ucNUh1eeRkTSaqpIMtDYcqRjlHeAhoxSYnmM0MwkcxkRWSCJSbadFUxJbirX14n3WbDdRruXbPWui7qKMMpnMEFuHAJLbiFNnSAQArP8Apv1pP1Yr1bH8vRklXsnMAfWJ8/7V2SlA==</latexit><latexit sha1_base64="YPdX4MC01IfpYclDQWBRpGmveCY=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSBSZUiYWxCPqQ2ihyXKe16jiR7SCVqF/CwgBCrHwKG3+D02aAliNZOjrnXt3jEyScKe0431ZpY3Nre6e8W9nbPzis2kfHXRWnktAOiXks+wFWlDNBO5ppTvuJpDgKOO0F05vc7z1SqVgsHvQsoV6Ex4KFjGBtJN+u1ocR1hOCeXY/9926b9echrMAWiduQWpQoO3bX8NRTNKICk04VmrgOon2Miw1I5zOK8NU0QSTKR7TgaECR1R52SL4HJ0bZYTCWJonNFqovzcyHCk1iwIzmadUq14u/ucNUh1eeRkTSaqpIMtDYcqRjlHeAhoxSYnmM0MwkcxkRWSCJSbadFUxJbirX14n3WbDdRruXbPWui7qKMMpnMEFuHAJLbiFNnSAQArP8Apv1pP1Yr1bH8vRklXsnMAfWJ8/7V2SlA==</latexit><latexit sha1_base64="YPdX4MC01IfpYclDQWBRpGmveCY=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSBSZUiYWxCPqQ2ihyXKe16jiR7SCVqF/CwgBCrHwKG3+D02aAliNZOjrnXt3jEyScKe0431ZpY3Nre6e8W9nbPzis2kfHXRWnktAOiXks+wFWlDNBO5ppTvuJpDgKOO0F05vc7z1SqVgsHvQsoV6Ex4KFjGBtJN+u1ocR1hOCeXY/9926b9echrMAWiduQWpQoO3bX8NRTNKICk04VmrgOon2Miw1I5zOK8NU0QSTKR7TgaECR1R52SL4HJ0bZYTCWJonNFqovzcyHCk1iwIzmadUq14u/ucNUh1eeRkTSaqpIMtDYcqRjlHeAhoxSYnmM0MwkcxkRWSCJSbadFUxJbirX14n3WbDdRruXbPWui7qKMMpnMEFuHAJLbiFNnSAQArP8Apv1pP1Yr1bH8vRklXsnMAfWJ8/7V2SlA==</latexit><latexit sha1_base64="YPdX4MC01IfpYclDQWBRpGmveCY=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSBSZUiYWxCPqQ2ihyXKe16jiR7SCVqF/CwgBCrHwKG3+D02aAliNZOjrnXt3jEyScKe0431ZpY3Nre6e8W9nbPzis2kfHXRWnktAOiXks+wFWlDNBO5ppTvuJpDgKOO0F05vc7z1SqVgsHvQsoV6Ex4KFjGBtJN+u1ocR1hOCeXY/9926b9echrMAWiduQWpQoO3bX8NRTNKICk04VmrgOon2Miw1I5zOK8NU0QSTKR7TgaECR1R52SL4HJ0bZYTCWJonNFqovzcyHCk1iwIzmadUq14u/ucNUh1eeRkTSaqpIMtDYcqRjlHeAhoxSYnmM0MwkcxkRWSCJSbadFUxJbirX14n3WbDdRruXbPWui7qKMMpnMEFuHAJLbiFNnSAQArP8Apv1pP1Yr1bH8vRklXsnMAfWJ8/7V2SlA==</latexit>

�
<latexit sha1_base64="NOLh6dlVoBJoa+55aCR1zyEzeDw=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BFvBU9ntRU9S8OKxgv2AdinZNNvGZpMlyQpl6X/w4kERr/4fb/4b03YP2vpg4PHeDDPzwkRwYz3vGxU2Nre2d4q7pb39g8Oj8vFJ26hUU9aiSijdDYlhgkvWstwK1k00I3EoWCec3M79zhPThiv5YKcJC2IykjzilFgntav95phXB+WKV/MWwOvEz0kFcjQH5a/+UNE0ZtJSQYzp+V5ig4xoy6lgs1I/NSwhdEJGrOeoJDEzQba4doYvnDLEkdKupMUL9fdERmJjpnHoOmNix2bVm4v/eb3URtdBxmWSWibpclGUCmwVnr+Oh1wzasXUEUI1d7diOiaaUOsCKrkQ/NWX10m7XvO9mn9frzRu8jiKcAbncAk+XEED7qAJLaDwCM/wCm9IoRf0jj6WrQWUz5zCH6DPH5objnU=</latexit><latexit sha1_base64="NOLh6dlVoBJoa+55aCR1zyEzeDw=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BFvBU9ntRU9S8OKxgv2AdinZNNvGZpMlyQpl6X/w4kERr/4fb/4b03YP2vpg4PHeDDPzwkRwYz3vGxU2Nre2d4q7pb39g8Oj8vFJ26hUU9aiSijdDYlhgkvWstwK1k00I3EoWCec3M79zhPThiv5YKcJC2IykjzilFgntav95phXB+WKV/MWwOvEz0kFcjQH5a/+UNE0ZtJSQYzp+V5ig4xoy6lgs1I/NSwhdEJGrOeoJDEzQba4doYvnDLEkdKupMUL9fdERmJjpnHoOmNix2bVm4v/eb3URtdBxmWSWibpclGUCmwVnr+Oh1wzasXUEUI1d7diOiaaUOsCKrkQ/NWX10m7XvO9mn9frzRu8jiKcAbncAk+XEED7qAJLaDwCM/wCm9IoRf0jj6WrQWUz5zCH6DPH5objnU=</latexit><latexit sha1_base64="NOLh6dlVoBJoa+55aCR1zyEzeDw=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BFvBU9ntRU9S8OKxgv2AdinZNNvGZpMlyQpl6X/w4kERr/4fb/4b03YP2vpg4PHeDDPzwkRwYz3vGxU2Nre2d4q7pb39g8Oj8vFJ26hUU9aiSijdDYlhgkvWstwK1k00I3EoWCec3M79zhPThiv5YKcJC2IykjzilFgntav95phXB+WKV/MWwOvEz0kFcjQH5a/+UNE0ZtJSQYzp+V5ig4xoy6lgs1I/NSwhdEJGrOeoJDEzQba4doYvnDLEkdKupMUL9fdERmJjpnHoOmNix2bVm4v/eb3URtdBxmWSWibpclGUCmwVnr+Oh1wzasXUEUI1d7diOiaaUOsCKrkQ/NWX10m7XvO9mn9frzRu8jiKcAbncAk+XEED7qAJLaDwCM/wCm9IoRf0jj6WrQWUz5zCH6DPH5objnU=</latexit><latexit sha1_base64="NOLh6dlVoBJoa+55aCR1zyEzeDw=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BFvBU9ntRU9S8OKxgv2AdinZNNvGZpMlyQpl6X/w4kERr/4fb/4b03YP2vpg4PHeDDPzwkRwYz3vGxU2Nre2d4q7pb39g8Oj8vFJ26hUU9aiSijdDYlhgkvWstwK1k00I3EoWCec3M79zhPThiv5YKcJC2IykjzilFgntav95phXB+WKV/MWwOvEz0kFcjQH5a/+UNE0ZtJSQYzp+V5ig4xoy6lgs1I/NSwhdEJGrOeoJDEzQba4doYvnDLEkdKupMUL9fdERmJjpnHoOmNix2bVm4v/eb3URtdBxmWSWibpclGUCmwVnr+Oh1wzasXUEUI1d7diOiaaUOsCKrkQ/NWX10m7XvO9mn9frzRu8jiKcAbncAk+XEED7qAJLaDwCM/wCm9IoRf0jj6WrQWUz5zCH6DPH5objnU=</latexit>

 
<latexit sha1_base64="MqGnJ5QtjT8F0wrQQL8ww2MWs24=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BFvBU9ntRU9S8OKxgv2AdinZNNvGZpMlyQpl6X/w4kERr/4fb/4b03YP2vpg4PHeDDPzwkRwYz3vGxU2Nre2d4q7pb39g8Oj8vFJ26hUU9aiSijdDYlhgkvWstwK1k00I3EoWCec3M79zhPThiv5YKcJC2IykjzilFgntav9puHVQbni1bwF8Drxc1KBHM1B+as/VDSNmbRUEGN6vpfYICPacirYrNRPDUsInZAR6zkqScxMkC2uneELpwxxpLQrafFC/T2RkdiYaRy6zpjYsVn15uJ/Xi+10XWQcZmklkm6XBSlAluF56/jIdeMWjF1hFDN3a2Yjokm1LqASi4Ef/XlddKu13yv5t/XK42bPI4inME5XIIPV9CAO2hCCyg8wjO8whtS6AW9o49lawHlM6fwB+jzB6rdjoA=</latexit><latexit sha1_base64="MqGnJ5QtjT8F0wrQQL8ww2MWs24=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BFvBU9ntRU9S8OKxgv2AdinZNNvGZpMlyQpl6X/w4kERr/4fb/4b03YP2vpg4PHeDDPzwkRwYz3vGxU2Nre2d4q7pb39g8Oj8vFJ26hUU9aiSijdDYlhgkvWstwK1k00I3EoWCec3M79zhPThiv5YKcJC2IykjzilFgntav9puHVQbni1bwF8Drxc1KBHM1B+as/VDSNmbRUEGN6vpfYICPacirYrNRPDUsInZAR6zkqScxMkC2uneELpwxxpLQrafFC/T2RkdiYaRy6zpjYsVn15uJ/Xi+10XWQcZmklkm6XBSlAluF56/jIdeMWjF1hFDN3a2Yjokm1LqASi4Ef/XlddKu13yv5t/XK42bPI4inME5XIIPV9CAO2hCCyg8wjO8whtS6AW9o49lawHlM6fwB+jzB6rdjoA=</latexit><latexit sha1_base64="MqGnJ5QtjT8F0wrQQL8ww2MWs24=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BFvBU9ntRU9S8OKxgv2AdinZNNvGZpMlyQpl6X/w4kERr/4fb/4b03YP2vpg4PHeDDPzwkRwYz3vGxU2Nre2d4q7pb39g8Oj8vFJ26hUU9aiSijdDYlhgkvWstwK1k00I3EoWCec3M79zhPThiv5YKcJC2IykjzilFgntav9puHVQbni1bwF8Drxc1KBHM1B+as/VDSNmbRUEGN6vpfYICPacirYrNRPDUsInZAR6zkqScxMkC2uneELpwxxpLQrafFC/T2RkdiYaRy6zpjYsVn15uJ/Xi+10XWQcZmklkm6XBSlAluF56/jIdeMWjF1hFDN3a2Yjokm1LqASi4Ef/XlddKu13yv5t/XK42bPI4inME5XIIPV9CAO2hCCyg8wjO8whtS6AW9o49lawHlM6fwB+jzB6rdjoA=</latexit><latexit sha1_base64="MqGnJ5QtjT8F0wrQQL8ww2MWs24=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BFvBU9ntRU9S8OKxgv2AdinZNNvGZpMlyQpl6X/w4kERr/4fb/4b03YP2vpg4PHeDDPzwkRwYz3vGxU2Nre2d4q7pb39g8Oj8vFJ26hUU9aiSijdDYlhgkvWstwK1k00I3EoWCec3M79zhPThiv5YKcJC2IykjzilFgntav9puHVQbni1bwF8Drxc1KBHM1B+as/VDSNmbRUEGN6vpfYICPacirYrNRPDUsInZAR6zkqScxMkC2uneELpwxxpLQrafFC/T2RkdiYaRy6zpjYsVn15uJ/Xi+10XWQcZmklkm6XBSlAluF56/jIdeMWjF1hFDN3a2Yjokm1LqASi4Ef/XlddKu13yv5t/XK42bPI4inME5XIIPV9CAO2hCCyg8wjO8whtS6AW9o49lawHlM6fwB+jzB6rdjoA=</latexit>

⌦
<latexit sha1_base64="5DH0qBCDX9Um72gKumgDPdGxo8A=">AAAB73icbVA9SwNBEJ3zM8avqKXNYiJYhbs0WknAxs4I5gOSI+xt5pIle3vn7p4QjvwJGwtFbP07dv4bN8kVmvhg4PHeDDPzgkRwbVz321lb39jc2i7sFHf39g8OS0fHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2Z++wmV5rF8MJME/YgOJQ85o8ZKnUrvLsIhrfRLZbfqzkFWiZeTMuRo9EtfvUHM0gilYYJq3fXcxPgZVYYzgdNiL9WYUDamQ+xaKmmE2s/m907JuVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeGVn3GZpAYlWywKU0FMTGbPkwFXyIyYWEKZ4vZWwkZUUWZsREUbgrf88ipp1aqeW/Xua+X6dR5HAU7hDC7Ag0uowy00oAkMBDzDK7w5j86L8+58LFrXnHzmBP7A+fwBF6uPUQ==</latexit><latexit sha1_base64="5DH0qBCDX9Um72gKumgDPdGxo8A=">AAAB73icbVA9SwNBEJ3zM8avqKXNYiJYhbs0WknAxs4I5gOSI+xt5pIle3vn7p4QjvwJGwtFbP07dv4bN8kVmvhg4PHeDDPzgkRwbVz321lb39jc2i7sFHf39g8OS0fHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2Z++wmV5rF8MJME/YgOJQ85o8ZKnUrvLsIhrfRLZbfqzkFWiZeTMuRo9EtfvUHM0gilYYJq3fXcxPgZVYYzgdNiL9WYUDamQ+xaKmmE2s/m907JuVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeGVn3GZpAYlWywKU0FMTGbPkwFXyIyYWEKZ4vZWwkZUUWZsREUbgrf88ipp1aqeW/Xua+X6dR5HAU7hDC7Ag0uowy00oAkMBDzDK7w5j86L8+58LFrXnHzmBP7A+fwBF6uPUQ==</latexit><latexit sha1_base64="5DH0qBCDX9Um72gKumgDPdGxo8A=">AAAB73icbVA9SwNBEJ3zM8avqKXNYiJYhbs0WknAxs4I5gOSI+xt5pIle3vn7p4QjvwJGwtFbP07dv4bN8kVmvhg4PHeDDPzgkRwbVz321lb39jc2i7sFHf39g8OS0fHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2Z++wmV5rF8MJME/YgOJQ85o8ZKnUrvLsIhrfRLZbfqzkFWiZeTMuRo9EtfvUHM0gilYYJq3fXcxPgZVYYzgdNiL9WYUDamQ+xaKmmE2s/m907JuVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeGVn3GZpAYlWywKU0FMTGbPkwFXyIyYWEKZ4vZWwkZUUWZsREUbgrf88ipp1aqeW/Xua+X6dR5HAU7hDC7Ag0uowy00oAkMBDzDK7w5j86L8+58LFrXnHzmBP7A+fwBF6uPUQ==</latexit><latexit sha1_base64="5DH0qBCDX9Um72gKumgDPdGxo8A=">AAAB73icbVA9SwNBEJ3zM8avqKXNYiJYhbs0WknAxs4I5gOSI+xt5pIle3vn7p4QjvwJGwtFbP07dv4bN8kVmvhg4PHeDDPzgkRwbVz321lb39jc2i7sFHf39g8OS0fHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2Z++wmV5rF8MJME/YgOJQ85o8ZKnUrvLsIhrfRLZbfqzkFWiZeTMuRo9EtfvUHM0gilYYJq3fXcxPgZVYYzgdNiL9WYUDamQ+xaKmmE2s/m907JuVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeGVn3GZpAYlWywKU0FMTGbPkwFXyIyYWEKZ4vZWwkZUUWZsREUbgrf88ipp1aqeW/Xua+X6dR5HAU7hDC7Ag0uowy00oAkMBDzDK7w5j86L8+58LFrXnHzmBP7A+fwBF6uPUQ==</latexit>

Attacker chooses w ∈ I2

and rw : O2 → [0, 1] on P2

game

Defender responds with
Ω(q, w) ∈ O2 on P2 game

Attacker chooses Φ(w) ∈ I1

and rΦ(w) : O1 → [0, 1] on P1

game

Defender responds with
q ∈ O1 on P1 game

Fig. 3: Depiction of the mappings Φ,Ψ and Ω of a reduction: for all s ∈ S2, w ∈ I2 and q ∈ O1, µO1(q | Ψ(s),Φ(w)) = µO2(Ω(q, w) | s, w).

Then, given probability distributions µ(~v1,~o1)
S1 and µ(~v2,~o2)

S2 , we
say that µ(~v2,~o2)

S2 = Ψ〈µ(~v1,~o1)
S1 〉, if

∀s ∈ S2, µS2(s | ~v2, ~o2) = µS1(Ψ(s) | ~v1, ~o1).

Definition VI.1. Given probability distributions µ(~v1,~o1)
S1 and

µ
(~v2,~o2)
S2 , we say that the program P1 reduces via Ξ to the

program P2 and write it as (P1, µ
(~v1,~o1)
S1 ) 4Ξ (P2, µ

(~v2,~o2)
S2 ), if:

• for all s ∈ S2, w ∈ I2 and q ∈ O1,

µO1
(q | Ψ(s),Φ(w)) = µO2

(Ω(q, w) | s, w)

and
• µ

(~v2,~o2)
S2 = Ψ(µ

(~v1,~o1)
S1 ).

In such a case, we call the tuple of mappings Ξ a reduction
of P1 to P2.

First we present two lemmas that are used in the proof of
Theorem VI.4.

Lemma VI.2. Let P1 = (S1, I1,O1, µS1 , µO1
) and P2 =

(S2, I2,O2, µS2 , µO2
) be two programs and let Ξ = (Ψ,Φ,Ω)

and ~v1 ∈ I1, ~v2 ∈ I2, ~o1 ∈ O1, ~o2 ∈ O2 be such that
(P1, µ

(~v1,~o1)
S1 ) 4Ξ (P2, µ

(~v2,~o2)
S2 ). Then, for all w ∈ I2, q ∈ O1,

and ` ∈ N,∑
s′∈(S2)`

µO2
(Ω(q, w) | s′, w) · µS2(s′ | ~v2, ~o2) =∑

s′∈(S1)`
µO1

(q | s′,Φ(w)) · µS1(s′ | ~v1, ~o1)).

Proof: By assumption that (P1, µ
(~v1,~o1)
S1 ) 4Ξ

(P2, µ
(~v2,~o2)
S2 ), we know that for all s′ ∈ S2,

µS2(s′ | ~v2, ~o2) = µS1(Ψ(s′) | ~v1, ~o1). This also
implies that for all s′′ ∈ S1 that are not in the image
of Ψ, µS1(s′′ | ~v1, ~o1) must be equal to 0, since
for all ` ∈ N

∑
s′∈(Im(Ψ))`

µS1(Ψ(s′) | ~v1, ~o1) =∑
s′∈(S2)`

µS2(s′ | ~v2, ~o2) = 1 and by definition∑
s′∈(S1)`

µS1(Ψ(s′) | ~v1, ~o1) is also equal to 1. Furthermore,
by assumption, for all s ∈ S2, w ∈ I2 and q ∈ O1,
µO2

(Ω(q, w) | s, w) = µO1
(q | Ψ(s),Φ(w)), and therefore∑

s′∈(S2)`
µO2

(Ω(q, w) | s′, w) · µS2(s′ | ~v2, ~o2) =

=
∑
s′∈(S2)`

µO1
(q | Ψ(s′),Φ(w)) · µS1(Ψ(s′) | ~v1, ~o1)) =

=
∑
s′′∈(S1)`

µO1
(q | s′′,Φ(w)) · µS1(s′′ | ~v1, ~o1)),

as required.

Lemma VI.3. Let P1 = (S1, I1,O1, µS1 , µO1
) and P2 =

(S2, I2,O2, µS2 , µO2) be two programs and let Ξ = (Ψ,Φ,Ω)
and ~v1 ∈ I1, ~v2 ∈ I2, ~o1 ∈ O1, ~o2 ∈ O2 be such that
(P1, µ

(~v1,~o1)
S1 ) 4Ξ (P2, µ

(~v2,~o2)
S2 ). Then for any ~v ∈ I∗2 and

~o ∈ O∗1 , (P1, µ
(~v1·Φ(~v),~o1·~o)
S1 ) 4Ξ (P2, µ

(~v2·~v,~o2·Ω(~o,~v))
S2 ).

Proof: We need to show that for any ~v ∈ I∗2 and ~o ∈ O∗1 ,
and for any s ∈ S2, w ∈ I2 and q ∈ O1, it holds that
• µO1

(q | Ψ(s),Φ(w)) = µO2
(Ω(q, w) | s, w), and

• µ
(~v2·~v,~o2·Ω(~o,~v))
S2 = Ψ(µ

(~v1·Φ(~v),~o1·~o)
S1 ).

The first condition holds by assumption that (P1, µ
(~v1,~o1)
S1 ) 4Ξ

(P2, µ
(~v2,~o2)
S2 ). For the second condition it suffices to show that

for all ~v ∈ I∗2 , ~o ∈ O∗1 , and s ∈ S2,

µS2(s | ~v2 · ~v, ~o2 · Ω(~o,~v)) = µS1(Ψ(s) | ~v1 · Φ(~v), ~o1 · ~o).
We proceed by induction on the length |~v| = |~o|. For the

base case, suppose that |~v| = |~o| = 0. Then the statement
holds by the assumption that µ(~v2,~o2)

S2 = Ψ(µ
(~v1,~o1)
S1 ). For the

inductive case, suppose that the statement holds for all ~v and ~o
whose size is less than N , for some N ∈ N, and consider ~v and
~o whose size is exactly N . We write ~v as ~v′ ·w and ~o as ~o′ · q,
where |~v′| = |~o′| = N − 1. Then, by the inductive hypothesis
we have that (P1, µ

(~v1·Φ(~v′),~o1·~o′)
S1 ) 4Ξ (P2, µ

(~v2·~v′,~o2·Ω(~o′,~v′))
S2 ),

which immediately implies that for any s ∈ S2, w ∈ I2 and
q ∈ O1, it holds that
• µO1(q | Ψ(s),Φ(w)) = µO2(Ω(q, w) | s, w), and
• µ

(~v2·~v′,~o2·Ω(~o′,~v′))
S2 = Ψ(µ

(~v1·Φ(~v′),~o1·~o′)
S1 ).

Furthermore, by definition,

µS2(s | ~v2 · ~v′ · w,~o2 · Ω(~o′, ~v′) · Ω(q, w)) =

µO2
(Ω(q,w)|s,w)·µS2 (s|~v2·~v′,~o2·Ω(~o′,~v′))∑

s′∈(S2)`

µO2
(Ω(q, w) | s′, w) · µS2(s′ | ~v2 · ~v′, ~o2 · Ω(~o′, ~v′))

,

(6)
and by Lemma VI.2, the denominator of the latter is equal to∑
s′′∈(S1)`

µO1
(q | s′′,Φ(w)) · µS1(s′′ | ~v1 · Φ(~v′), ~o1 · ~o′)).

Thus µS2(s | ~v2 · ~v′ · w,~o2 · Ω(~o′, ~v′) · Ω(q, w)) is equal to

µO1(q | Ψ(s),Φ(w)) · µS1(Ψ(s) | ~v1 · Φ(~v′), ~o1 · ~o′)∑
s′′∈(S1)`

µO1
(q | s′′,Φ(w)) · µS1(s′′ | ~v1 · Φ(~v′), ~o1 · ~o′)

.



which is equal, by definition, to µS1(Ψ(s) | ~v1 · Φ(~v), ~o1 · ~o),
as required.

It follows that if (P1, µ
(ε,ε)
S1 ) 4Ξ (P2, µ

(ε,ε)
S2 ), then for any

~v ∈ I∗2 and ~o ∈ O∗1 , (P1, µ
(Φ(~v),~q)
S1 ) 4Ξ (P2, µ

(~v,Ω(~o,~v))
S2 ).

The following theorem establishes the connection between
reductions of one program to another, and simulating a strategy
of the latter as a strategy of the former.

Theorem VI.4. Let P1 = (S1, I1,O1, µS1 , µO1
) and P2 =

(S2, I2,O2, µS2 , µO2
) be two programs, let ~v1 ∈ I1, ~v2 ∈

I2, ~o1 ∈ O1 and ~o2 ∈ O2, and let Ξ = (Ψ,Φ,Ω) be such that
(P1, µ

(~v1,~o1)
S1 ) 4Ξ (P2, µ

(~v2,~o2)
S2 ). Suppose also that Attacker

can win the n-round r-confidence game on P2, starting from
the initial distribution of secrets µ(~v2,~o2)

S2 for some n ∈ N and
r ∈ [0, 1]. Then Attacker can win the n-round r-confidence
game on P1 starting with initial distribution of secrets µ(~v1,~o1)

S1 .

Proof: In what follows, when Attacker can win the n-round
r-confidence game starting with initial probability distribution
of secrets µS , we say that 〈µS , n, r〉 is a winning configuration
for Attacker. It should be noted that what we call a position
〈~v, ~o, r〉 in the game, with n remaining rounds, corresponds to
the configuration 〈µ(~v,~o)

S , n, r〉, and vice versa.
The proof proceeds by induction on n ∈ N. For the base

case, suppose that n = 0. Then, since 〈µ(~v2,~o2)
S2 , 0, r〉 is a

winning configuration for Attacker in P2, it follows that
maxs∈S2 µ

(~v2,~o2)
S2 (s) ≥ r. Let s be such that µ(~v2,~o2)

S2 (s) ≥ r.
Since µ(~v2,~o2)

S2 = Ψ(µ
(~v1,~o1)
S1 ), it follows that µ(~v1,~o1)

S1 (Ψ(s)) ≥
r, and therefore, 〈µ(~v1,~o1)

S1 , 0, r〉 is a winning configuration for
Attacker in P1.

For the inductive case, we distinguish the two attackers
and defenders by writing Attacker1 and Defender1 for the
ones on P1, and Attacker2 and Defender2 for the ones on
P2. Suppose the statement holds for all n < N , for some
N ∈ N, and suppose 〈µ(~v2,~o2)

S2 , N, r〉 is a winning configuration
for Attacker2 in P2. Then, Attacker2 can choose w ∈ I2

and function rw : O2 → [0, 1], according to his winning
strategy. Let Attacker1 choose Φ(w) ∈ I1 and function rΦ(w) :
O1 → [0, 1] defined as the function that maps any q ∈ O1 to
rw(Ω(q, w)). First we show that rΦ(w) satisfies the constraints
of a valid move by showing that

∑
q∈O1

µO1
(q | Φ(w);~v1, ~o1)·

rΦ(w)(q) = r. Since for all q ∈ O1, rΦ(w)(q) = rw(Ω(q, w)),
it suffices to show that for all q ∈ O1, µO1

(q | Φ(w);~v1, ~o1) =
µO2(Ω(q, w) | w;~v2, ~o2), and that for any q′ not in the image
of Ω, µO2(q′ | w;~v2, ~o2) = 0. It should be noted that the
second statement is implied by the first, since

∑
q∈O2

µO2
(q |

w;~v2, ~o2) = 1 and also
∑
q∈O1

µO1
(q | Φ(w);~v1, ~o1)) = 1.

By definition, µO1
(q | Φ(w);~v1, ~o1)) is equal to∑

s′∈(S1)`

µO1
(q | s′,Φ(w)) · µS2(s′ | ~v1, ~o1),

and µO2
(Ω(q, w) | w;~v2, ~o2) is equal to∑
s′∈(S2)`

µO2
(Ω(q, w) | s′, w) · µS2(s′ | ~v2, ~o2).

Thus, by Lemma VI.2, for all q ∈ O1, µO1
(q |

Φ(w);~v1, ~o1)) = µO2(Ω(q, w) | w;~v2, ~o2).
Therefore rΦ(w) satisfies the constraints of a valid move

by Attacker1. Let q ∈ O1 be any reply from Defender1. By
assumption that 〈µ(~v2,~o2)

S2 , n, r〉 is a winning configuration for
Attacker2, it follows that 〈µ(~v2·w,~o2·Ω(q,w))

S2 , n−1, rw(Ω(q, w))〉
is also a winning configuration for Attacker2. By Lemma VI.3,
(P1, µ

(~v1·Φ(w),~o1·q)
S1 ) 4Ξ (P2, µ

(~v2·w,~o2·Ω(q,w))
S2 ). Furthermore

rΦ(w)(q) = rw(Ω(q, w)). Thus, we can apply the inductive
hypothesis, and conclude that 〈µ(~v1·Φ(w),~o1·q)

S1 , n−1, rΦ(w)(q)〉
is a winning configuration for Attacker1. As this is the case
for any move q by Defender1, it holds that 〈µ(~v1,~o1)

S1 , n, r〉 is a
winning configuration for Attacker1 as required.

A. Examples on simulating strategies

In Fig. 4, we present the two programs below called PR2 and
PR3 whose structure is identical and with the only difference
between them being that PR2 returns as output the number of
indices in the two input strings where the bits agree, modulo
2, whereas PR3 returns the same number but modulo 3. They
both also return a boolean indicating whether the two strings
are identical.

The interesting, and somewhat unintuitive, observation about
these two programs, is that PR2 is (2` − 1, 1)-secure under
a uniform initial distribution over the secrets, whereas PR3
is (`+ 1, 1)-insecure over the same distribution of secrets; a
vast difference in security for such similar programs. In what
follows we aim to establish two strategy simulations, as defined
in Definition VI.1, in order to show that PR2 is (2` − 1, 1)-
secure and PR3 is (`+ 1, 1)-insecure. For this we will use the
previous results where we showed that SL (i.e. program Psec
from Section I) is (2` − 1, 1)-secure and IQ is (`, 1)-insecure.

As explained earlier, to show security of a program P , we
use a reduction from a known secure program to P , and to
show insecurity of a program P ′, we use a reduction from P ′

to a known insecure program. As such, we present:
• a reduction from the secure program SL to PR2, and
• a reduction from PR3 to the insecure program IQ.

These two reductions presented below are not necessarily trivial,
but they don’t require reasoning over extended sequences of
move alternations, as showing security or insecurity directly
over the games would require. Instead, the point of the
reductions is to take advantage of the more global argument
that was made for the established results proving security or
insecurity of the programs SL and IQ respectively. We use
these two programs to demonstrate how reductions can be used,
but arguably, for these two particular programs, there are easier
ways to prove security and insecurity.

1) Reduction from SL to PR2: Let P1 be SL and P2 be PR2.
We fix a length of input secrets ` ∈ N for both programs, so that
by S1, I1, S2, and I2 we mean respectively (S1)`, (I1)`, (S2)`,
and (I2)`. We use the notation `2 to denote the value of ` mod 2.
Also, because the initial distribution of secrets is uniform, for
i ∈ {1, 2} and any s ∈ Si, µ(ε,ε)

Si (s) = 1
|Si| . We adopt the

following notation. Since the set of observations O2 of P2 are



Program PR2 Program PR3
def PR2(sec, val):

if (sec == val == ""):
return (0, True)

else:
res = PR2(sec.tail, val.tail)
if (sec.head == val.head):

return ((1+res[1])%2, res[2])
else:

return (res[1], False)

def PR3(sec, val):
if (sec == val == ""):
return (0, True)

else:
res = PR3(sec.tail, val.tail)
if (sec.head == val.head):

return ((1+res[1])%3, res[2])
else:

return (res[1], False)

Fig. 4: Programs PR2 and PR3 with the differences between two programs highlighted in red.

tuples over {0, 1} × {true, false}, for o ∈ O2, we denote with
o[1] the first component of o in {0, 1} and with o[2] its second
component in {true, false}. Given two inputs v, w ∈ I2, we
define diff(v, w) to be the number of indices in the two inputs
where the bits differ, modulo 2. Furthermore, for two values
p, q ∈ {0, 1}, we denote with p⊕ q their sum modulo 2. Given
v ∈ I2 and o ∈ O2, let then Φ : I2 → I1 and Ψ : S2 → S1

be the identity functions, and let Ω(v,o) : O1 × I2 → O2 be
the function that maps (b, w) to (diff(v, w) ⊕ o[1], b) where
b ∈ {true, false} = O1 and w ∈ I2. Let Ξ(v,o) be the tuple
(Φ,Ψ,Ω(v,o)) of mappings, where Ω(v,o) is parameterized by
v ∈ I2 and o ∈ O2. With

−−→
false we refer to a sequence of

observations, all of whose value is false, and where the length
of the sequence is determined by the context.

We will show that for any v ∈ I2, any o ∈ O2,
there exists a sequence ~x ∈ I1 of length 2`/2, such that
(P1, µ

(v·~x,o[2]·~y)
S1 ) 4Ξ(v,o)

(P2, µ
(v,o)
S2 ), where ~y =

−−→
false and is

of length 2`/2. Then, by Theorem VI.4, it follows that if
Attacker can win the game on P2 (i.e. PR2) from 〈µ(v,o)

S2 , n, r〉
then Attacker can also win the game on P1 (i.e. SL) from
〈µ(v·~x,o[2]·~y)
S1 , n, r〉. The sequence ~x will be such that Defender

has a winning strategy on P1 from 〈µ(v·~x,o[2]·~y)
S1 , 2`−1 − 2, 1〉

when o[2] is false. Thus it will follow that Defender has a
winning strategy on the program PR2 from 〈µ(v,o)

S2 , 2`−1−2, 1〉,
when o is such that o[2] = false. Since for any v ∈ I2 Defender
can reply with some o ∈ O2 such that o[2] = false, Defender
has a winning strategy from 〈µ(ε,ε)

S2 , 2`−1 − 1, 1〉, and the
program PR2 is thus (2`−1 − 1, 1)-secure.

Given v ∈ I2, we define Xv to be the set of secrets x ∈ S1

of length ` such that diff(v, x) = 1. Notice that X contains
exactly half the secrets from S1. We then let ~x be a sequence
comprising the elements of Xv in any order. When o[2] is
false, notice that Defender has a winning strategy on P1

from 〈µ(v·~x,o[2]·~y)
S1 , 2`−1 − 2, 1〉. We assume that this has been

established earlier for the program P1, but informally this is
because each guess from v · ~x by Attacker disqualifies only
that guess as a secret.

It remains to show that for any v ∈ I2 and o ∈ O2,
(P1, µ

(v·~x,o[2]·~y)
S1 ) 4Ξ(v,o)

(P2, µ
(v,o)
S2 ), where ~y =

−−→
false. To

show the latter, by Definition VI.1, it suffices to show that
• for all s ∈ S2, w ∈ I2 and q ∈ O1, µO1

(q | s, w) =
µO2

((diff(v, w)⊕ o[1], q) | s, w), and
• for all s ∈ S2, µS2(s | v, o) = µS1(s | v · ~x, o[2] · ~y).

Fix v ∈ I2 and o ∈ O2, where o = (p, b), for p ∈ {0, 1} and
b ∈ {true, false}. For the first condition, let s ∈ S2, w ∈ I2

and q ∈ O1 = {true, false}. Since both SL and PR2 are
deterministic, there is exactly one possible output for SL(s, w),
either true or false. By definition, o[1], being equal to the first
component of the observation PR2(s, v), is the number of
common bits between s and v, modulo 2, and thus it is also
equal to the number of different bits modulo 2, summed to
the length of s modulo 2. In other words, o[1] is equal to
diff(s, v) ⊕ `2, meaning that diff(s, v) = o[1] ⊕ `2. Using the
same reasoning, notice that PR2(s, w)[1] = diff(s, w)⊕`2. The
latter is equal to diff(s, v)⊕ diff(v, w)⊕ `2, and consequently
equal to o[1] ⊕ diff(v, w). Therefore, diff(s, w) = diff(v, w) ⊕
o[1]⊕ `2. Hence PR2(s, w)[1] = diff(v, w)⊕ o[1]⊕ `2 ⊕ `2 =
diff(v, w)⊕o[1]. We know that µO1

(q | s, w) = 1 if and only if
µO2((PR2(s, w)[1], q) | s, w) = 1, simply because SL returns
true on inputs s ∈ S1 and w ∈ I1 if and only if the second
component of PR2 is true on the same inputs (while the first
component is by definition PR2(s, w)[1]). From the argument
above, it is the case that µO2

((PR2(s, w)[1], q) | s, w) = 1
if and only if µO2

((diff(v, w) ⊕ o[1], q) | s, w) = 1, and the
result follows.

For the second condition, notice that µS2(s | v, o) = µS1(s |
v·~x, o[2]·~y), since in the case that o[2] is true, both µS2(s | v, o)
and µS1(s | v, o[2]) are 1 for s = v, and 0 for all other
values of s. Meanwhile, in the case where o[2] is false, both
µS2(s | v, o) and µS1(s | v ·~x, o[2] ·~y) are 0 for all s ∈ S2 such
that diff(s, v) = 1, and for s = v, and equal to 1

|S2|/2−1 for
the remaining |S2|/2− 1 secrets. This completes the argument
for the reduction.

2) Reduction from PR3 to IQ: We define P1 to be PR3 and
P2 to be IQ. We again fix ` ∈ N and restrict the sets S1,S2, I1

and I2 to inputs related to the security parameter ` as before.
We remind the reader that for IQ, for the security parameter `,
(I2)` is defined to be the set of integers {1, . . . , `}. We want
to show that for any v ∈ I1 and (o, b) ∈ O1, there exists an
initial probability distribution of secrets µ(ε,ε)

S2 and a reduction
Ξ(v,o), such that (P1, µ

(v,o)
S1 ) 4Ξ(v,o)

(P2, µ
(ε,ε)
S2 ). Notice that

for any initial distribution of secrets µ(ε,ε)
S2 , the program IQ (i.e.

P2) is (`, 1)-insecure, as shown earlier in Example V.3. Given
the above reduction Ξ(v,o), for any v ∈ I1 and (o, b) ∈ O1,
and Theorem VI.4, it follows that PR3 is (`+ 1, 1)-insecure.

It thus remains to be shown that for any v ∈ I1, and any



(o, b) ∈ O1, there exists µ(ε,ε)
S2 and Ξ(v,o) = (Φ,Ψ,Ω) such

that
• for all s ∈ S2, w ∈ I2 and q ∈ O1,

µO1
(q | Ψ(s),Φ(w)) = µO2

(Ω(q, w) | s, w)

and
• ∀s ∈ S2, µS2(s | ε, ε) = µS1(s | v, o).

In fact, defining µ(ε,ε)
S2 to be equal to µ(v,o)

S1 suffices to handle
the second condition above. This is because IQ is (`, 1)-
insecure for any initial distribution of secrets under the same
strategy for Attacker.

For the other condition we proceed as follows. First we
define the function flip : I1 × N → I1 such that, given v =
a1 . . . ai . . . an and i ∈ {1, . . . , n}, flip(v, i) = a1 . . . ai . . . an
where 0 = 1 and 1 = 0. In other words, flip(v, i) is the
string obtained by flipping the i-th bit of v. Fix v ∈ I1 and
(o, b) ∈ O. We define Ξ(v,o) = (Φ,Ψ,Ω) to be such that for
all s ∈ S2, w ∈ I2 and q = (m, b) ∈ O1, Φ(w) = flip(v, w),
Ψ(s) = s and Ω((m, b), w) to be true exactly when m is equal
to o+1 mod 3 and the w-th bit of v is 0, or when m is equal to
o− 1 mod 3 and the w-th bit of v is 1. We define the value to
be false otherwise. Notice that µO1((o mod 3, b) | s, flip(v, w))
is 0, since we flipped exactly one bit from v, and by definition
µO1

((o mod 3, b′) | s, v)) = 1 for some b′ ∈ {true, false}. As
a result, for v = a1 · · · a`, we have the following cases:

When aw = 0 :
µO1

((o+ 1 mod 3, b) | s, flip(v, w)) = µO2
(true | s, w),

µO1
((o− 1 mod 3, b) | s, flip(v, w)) = µO2

(false | s, w),
When aw = 1 :
µO1((o+ 1 mod 3, b) | s, flip(v, w)) = µO2(false | s, w),
µO1((o− 1 mod 3, b) | s, flip(v, w)) = µO2(true | s, w).

To illustrate this, consider the case where aw = 0. Let s ∈ S1 be
any secret, and suppose that for v ∈ I1 with its w-th bit being 0,
P1(s, v) = (o, b) for some (o, b) ∈ O1. Then when we flip the
w-th bit of v, and only that bit, the output of P1(s, flip(v, w))
will either be (o + 1 mod 3, b) or (o − 1 mod 3, b) for some
b ∈ {true, false}. In the first case, it means that the w-th bit
of s is 1, since o+ 1 mod 3 implies the number of correct bits
between flip(v, w) and s has increased by 1 and the w-th bit of
v is 0. Again, this can be inferred because we flipped exactly
one bit in v. Similarly, if P1(s, flip(v, w)) = (o − 1 mod 3, b)
it means that the w-th bit of s is 0. Hence P2(s, w) will be
true in the first case and false in the second case, as described
above. The case where aw = 1 is similar. This completes the
argument.

VII. RELATED WORK

Closely related to our work is the work by Köpf and
Basin [10], [11] that laid the foundation for formalizing
security under adaptive adversaries for deterministic systems.
Importantly, they have introduced the notion of an attack tree
that captures an attacker’s strategy. Each node of the tree
represents the attacker’s current knowledge (or, uncertainty)
about the secrets, with the root node being the initial state
of his knowledge. Each node determines the next query input

chosen by the attacker and a child node is added for each
possible query output. They use quantitative information flow
(QIF) to measure the amount of information an attacker gains
by running a strategy. As standard in QIF [4], [8], [19], [25],
this is defined as the change in the attacker’s knowledge before
and after the attack. They also show that maximum information
leakage over all attack strategies of some bounded length can
be computed by enumerating those strategies and computing
the corresponding QIF. Boreale and Pampaloni [7] extended
the line of work to probabilistic systems.

Our work is inspired by, and builds on the above char-
acterization of attack strategies as attack trees. New in our
work is the introduction of the defender player, which was
missing in the previous works, thus making the formalism
a full-blown game. Our game exactly captures security of
systems, that is, the existence of a winning strategy for the
defender player implies that the system is secure whereas that
for the attacker player implies that the system is insecure. We
remark that a correspondence between a particular winning
strategy for these games and the attack trees could be made. For
the attack trees of [7], a strategy for an n-round game would
naturally correspond to a tree of height n, each of whose nodes
would additionally be labeled with the rw(q) values chosen by
Attacker. A similar correspondence would be produced in the
deterministic case, for the attack trees of [10], [11].

Also, our results are given in the form of (f, ε)-security
which asserts precise bounds on the number of attacker queries
and the probability of his success, where the bounds can be
parametric to the size of secrets. As we have shown, the game-
based characterization is useful for deriving such parametric
security bounds, as it allows strategy constructions that are
parametric to the security parameter. In addition, building
on the game-based formalism, we have proposed slopes and
game reductions which can expedite the process of proving or
disproving security.

As remarked before, the defense player’s move in our game
can be seen as her choosing a secret s internally and then
exhibiting the corresponding output o ∈ supp(P (s, v)) where
v is the input chosen by the attacker. This may be seen as if the
defender changes the secret as the game progresses. Mardziel
et al. [14] investigates security against adaptive adversaries in a
setting where the defender may change secrets across multiple
attack queries. However, their work is orthogonal to ours since
whereas their change of secrets is a physical one that actually
changes the secret of the running system, ours is a conceptual
means for proving or disproving security (defined by attackers’
probability of success) over all secrets distributed according to
some prior.

Finally, we remark that there are large body of works on
using game theory for security [2], [3], [18], [21]. Like the
work by Mardziel et al., these works are orthogonal to ours
as they concern settings in which the defender makes choices
that exert physical influences, such as choosing which system
to run given some finite number of possibilities [2], [3]. It is
interesting to note that, as shown in Remark III.4, probabilistic
choices give no additional power to attackers in our setting



(this was also conjectured in [7], but not proved). This is in
stark contrast to the setting with defenders making physical
choices where probabilistic attackers are shown to be strictly
more powerful than deterministic ones [2].

VIII. CONCLUSION

We have presented a new game-based characterization of
security against adaptive adversaries. Our game is played by
two players, Attacker and Defender, and it can be used to
derive precise security bounds of deterministic and probabilistic
systems. Importantly, the game allows one to derive security
bounds that are parametric to the size of secrets.

In addition, leveraging the game, we have proposed tech-
niques, called slopes and reductions, that can be used to
expedite the process of deriving security bounds. The former
provides a sound approximation of the bounds (for deterministic
programs), and the latter can be used to convert an attacker
strategy over one program to that of another, thereby allowing
one reuse previously established secure or insecure instances
to show security or insecurity of new ones.
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