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Abstract—As software development increasingly relies on ex-
ternal collaboration, organizations face new risks of intellectual
property leakage beyond traditional concerns about deployed
software. Even when the source code is protected, adversaries
may infer sensitive internal program specifications by observing
the program behavior during the development and testing phases.

This paper addresses the problem of specification leakage
through behavioral observation in collaborative software devel-
opment. We propose a novel software development method that
centers on specially crafted test doubles referred to as secure
mocks. Secure mocks serve as drop-in replacements for original
components during development and testing while preventing the
exposure of sensitive internal specifications through observable
behavior. We formalize the correctness conditions for secure
mocks and define the secure mock construction problem as a
constraint satisfaction problem parameterized by the program
to protect, the development specification, and a security policy.
Our approach enables secure test-driven development (TDD)
with external collaborators, bridging the gap between traditional
TDD styles. We discuss the implications for secure collaboration
with external developers and outline future research directions
for automating secure mock generation and integrating this
paradigm into real-world development pipelines.

Index Terms—Secure mock, TDD, information leakage

I. INTRODUCTION

For organizations, protecting the internal specifications of
programs has become a critical concern. Particularly, when
these specifications are considered the foundation of their
intellectual property and competitive edge, they must be
prevented from being leaked to external parties. Tradition-
ally, obfuscation and encryption are common techniques for
protecting completed software artifacts from illegal copying,
tampering, and reverse engineering by malicious users [1], [2].

The landscape of software development has evolved with the
widespread adoption of external collaboration [3]–[5]. Recent
online remote repositories provide platforms for sharing not
only the code but also the development environments with ex-
ternal contributors (e.g., GitHub Codespaces [6]). Crowdsourc-
ing parts of the development to anonymous crowd workers has
also become a common practice [7]–[9].

These trends expand the scope of potential information
leakage beyond just the deployed software to the software
development life cycle itself. Particularly, the external vendors
and developers in software supply chain are increasingly
recognized as an attack vector for potential leaks even in
the traditional outsourced development [10], [11]. Several
techniques and tools have been proposed to monitor and detect

source code leaks from public repositories [12]–[15]. For
proactive approaches, MORDEn [16] provides capabilities to
prevent source code leakage in collaborative development en-
vironments. Nevertheless, even if the source code is protected,
there remains a significant risk: adversaries may infer internal
program specifications by observing the program’s behavior
(e.g., [17]–[21]) during development and testing.

In this paper, we address the problem of internal specifi-
cation leakage via behavioral observation in the development
process. We propose a software development methodology that
leverages a specially crafted test double, called a secure mock.
A secure mock is designed so that it can be used as a drop-in
replacement for the original component during development
and testing, while ensuring that sensitive internal specification
is not exposed through its observable behavior. A secure mock
provides capabilities to securely work test-driven development
(TDD) [22], [23] collaborating with external developers. We
refer to this style of TDD as the Hachioji school and aim
to hit the sweet spot between the London school (mockist)
[22] which favors aggressive abstraction and mocking, and
the Detroit school (classicist) [23] which favors using real
components; by enabling practical development and testing
workflows while mitigating the risk of information leakage.1

The remainder of this paper is organized as follows. In
Section II, we present a motivating example to illustrate the
information leakage problem and introduce the concept of
secure mock and the Hachioji school. Section III formalizes
the problem setting, defines the requirements for secure mocks,
and frames the secure mock construction problem, which
is configured by a program to protect, a specification of a
program to develop, and a security policy that defines the
information leakage constraints. Section IV reviews related
work in data protection and foundations of modeling and
bounding information leakage. Finally, Section V concludes
the paper and discusses directions for future research.

II. ILLUSTRATIVE EXAMPLE

Let us consider a scenario in which a health insurance com-
pany develops an internal system that calculates and displays
insurance premiums based on customer information input. The
business logic for the premium calculation is developed in-

1Hachioji is a town in Japan geographically located at about the mid-point
between London and Detroit.



house, while the user interface, which receives customer infor-
mation and displays the information, the calculated premium,
and discount offers, is outsourced to reduce the development
costs. The requirements for the outsourced user interface are
(R0) forms to input customer name, age, and residence are
provided, (R1) the entered customer information is sent to
the premium calculation service, (R2) the premium is sent to
the discount offering service, which returns available discount
offers for the premium, and (R3) the customer information, the
premium calculated by the premium calculation service, and
the discount offers returned by the discount offering service
are displayed on the view. Acceptance criteria require that
tests confirming the correct implementation of requirements
R0, R1, R2, and R3 are passed.

A. Two Schools of Testing and Information Leakage

To ensure that the outsourced implementation meets the
acceptance criteria, it is necessary to provide test programs
in advance. There are two main schools of thought regarding
the construction of such test programs: the London school
(mockist) [22] and the Detroit school (classicist) [23]. The
London school is characterized by actively mocking compo-
nents that the system under test depends on, making it suitable
for verifying business logic. In contrast, the Detroit school
is reluctant to use mock dependencies, instead using actual
components in the test program, which is preferable when
verifying input/output, such as user interfaces.

To verify requirements R0, R1, R2, and R3, it is desirable
to provide a Detroit-style test program, as it is well-suited
for input/output verification. However, creating a Detroit-
style test program requires access to the actual premium
calculation service. This service often contains proprietary risk
assessment knowledge developed by the insurance company,
and providing it to the outsourcing vendor poses a risk of
intellectual property leakage.

For instance, consider the
premium calculation service
that calculates the premium
by customer age and res-
idence, as Table I shows.
The premium calculation

TABLE I
PREMIUM CALCULATION COMPONENT

a:Age Residence Premium
a ≥ 0 Foo Town 1,000

0 ≤ a ≤ 50 Buzz City 1,000
a > 50 Buzz City 1,500
a ≥ 0 Barpolis 1,000

service reflects that (a) Residence is a key parameter to the
calculation, and (b) the Buzz City residents are applied a
special pricing strategy that is different from other residents.
These characteristics can potentially be inferred by observing
the input/output values of the premium calculation service. If
(a) and (b) represent the insurance company’s proprietary risk
assessment knowledge, providing the actual premium calcula-
tion service to the outsourcing vendor poses a risk of intellec-
tual property leakage, even if its source code is hidden.

B. The Hachioji School and Secure Mock

The Hachioji school is a testing approach that aims to
minimize the risk of confidential information leakage to out-
sourcing vendors in the Detroit-style testing under untrusted
development environments. In the Hachioji-style testing, a

mock of the premium calculation component is used. We refer
to the mock as a secure mock, which is a mock of the original
dependency that is constructed in such a way that it can be
used in place of the original component in the test program
while preventing the leakage of intellectual property.

Consequently, the main interests of the Hachioji school and
secure mock are twofold:

Security policy on Secure Mock is conditions on a secure
mock to protect intellectual properties such as (a) and (b) in
the premium calculation service example. For the intellectual
properties (a) and (b), we can define conditions for information
protection by the notion of information flow [24]. Namely,
the security policy on a secure mock can be defined as
noninterference (or no information leakage) [25], which means
that the input values of a sensitive parameter have no effect
on output values. By mapping the key parameter Residence to
the sensitive parameter, the intellectual properties (a) and (b)
can be protected. It is also an interesting problem to consider
possible weakening of the conditions for individual intellectual
properties.

Secure Mock Construction concerns methods to create a
secure mock from the original dependency. In the premium
calculation service example, replacing the residence values
with dummy values to ensure noninterference seems to be
a solution, but this idea makes it impossible to confirm the
acceptance criteria, which is to verify the interface functional-
ity, such as providing input forms (R0) and displaying actual
residence names (R3). Similarly, if we replace the premium
value with a dummy value, we would not be able to verify the
functionality of the discount offering service (R2). A secure
mock ensures that no confidential information leakage occurs
while allowing tests equivalent to those using the original
dependency. In the next section, we formalize these problem
settings and the properties required for a secure mock.

III. PROBLEM SETTING

In this section, we first formalize the problem settings of
outsourced software development. Then, we discuss the prop-
erties required for a secure mock and define its construction
problem.

A. Outsourced Development and Security Properties

Definition 1 (Notational Conventions). Let G be a program
component under development and F be a program component
that G depends on. Let γ be a specification of G. We write
F ▷G :: γ to denote that the component G satisfies γ under a
component F .

Since multiple program components can be aggregated into
a single component (e.g., take the Cartesian product of the
components), we assume that G depends on a single program
component F for simplicity. The specification γ is often
expressed in a formal language or as test cases.

Definition 2 (Outsourced Development). An outsourced de-
velopment is a process where external software developers
implement a program component G such that F ▷ G :: γ.



When the external software developers are in another
country or crowd workers, the outsourced development is
respectively called offshoring [26] or crowdsourcing [9]. As
a way to implement a program component G which satisfies
γ, test-driven development (TDD) is a well-known approach
in software development practice, including outsourced de-
velopment. TDD in outsourced development lets the external
software developers take the program component F and the
specification γ as test cases from the project owners to
implement the program component G.

As remarked before, because the component F often con-
tains an intellectual property of the project owner, its imple-
mentation should be hidden from external software developers
by obfuscating [2] the source programs or providing only a
service endpoint [16]. However, even if F ’s implementation
is hidden, the risk of intellectual property leakage still exists.
External software developers may be possible to infer F ’s
intellectual property by observing its input/output behavior.
To model a security policy against this type of information
leakage, non-interference seems to be a promising formalism.

Definition 3 (Noninterference [25]). A program F with pa-
rameters X and X̄ is noninterferent with respect to X iff the
following proposition Ψ(F,X) is true.

Ψ(F,X) := ∀x1, x2 ∈ X,∀x̄ ∈ X̄.F (x1, x̄) = F (x2, x̄)

In the above definition, the parameters x and x̄ are referred
to as sensitive and non-sensitive parameters, respectively. Note
that x and x̄ can be a tuple so that the above covers the case
where multiple parameters can be sensitive or non-sensitive.

Example 1. Let F be the premium calculation component of
Table I. Ψ(F,Residence) is false because F (Foo Town, 60) =
1000 ̸= 1500 = F (Buzz City, 60).

Example 1 indicates that external software developers may
infer the intellectual properties (a) and (b) of Section II-A.

Since noninterference prohibits any information leakage, it
is the strongest policy that can be enforced. It is possible
to weaken the security policy depending on the intellectual
properties to be protected or an acceptable amount of leakage
[27]. For instance, consider the case where the intellectual
property to be protected is just (b) instead of (a) and (b).
The predicate Ψ can be weakened to the predicate ∀x1, x2 ∈
X,∀x̄ ∈ X̄.x1 = Buzz City ⇒ F (x1, x̄) = F (x2, x̄).

B. Secure Mock and Its Construction

Next, we model outsourced software development under a
security policy and formalize the notion of secure mock.

Consider the outsourced development defined in Defini-
tion 2 where the program F does not satisfy a security policy
Ψ. In the Hachioji school of TDD that we propose, we provide
a test double S(F ), where S is a program transformation that
transforms the given component to a test double. We state
the properties that are desired for S(F ). First, S(F ) should
be secure and does not leak proprietary information, that
is, it should satisfy Ψ(S(F ), X) with X being the sensitive

parameter. We denote this by ▷S(F ) :: Ψ. Second, the
external developers, receiving S(F ) and a possibly modified
specification Θ(γ) where γ is the original specification of the
target program component G, should implement G′ satisfying
S(F ) ▷G′ :: Θ(γ). We describe the specification modification
next.

Since S(F )▷G′ :: γ does not necessarily imply F ▷G′ :: γ,
after receiving the deliverable G′ from the external developers,
the project owner performs rework to ensure that F ▷ G′ :: γ.
There may be many ways to design such rework, as well
as ways to design the secure mock S(F ). One way that we
propose in this paper is to modify the specification for the
external software developers. Let Θ be a modification of the
specification γ which is a mapping between specifications
denoted by Θ : Spec → Spec where Spec is the set of
specifications. The external software developers’ specification
is denoted by Θ(γ). The specification modification restricts the
externally developed program G′ to satisfy a certain “good”
property that is not necessarily the same as γ but one that
allows us to rework G′ into a component that satisfies γ when
given the actual program component F .

Here, R is a map-
ping between programs.
The procedure of out-
sourced development
with secure mock is
summarized in the di-

F F ▷R(G′) :: γ

▷S(F ) :: Ψ S(F ) ▷ G′ :: Θ(γ)

S R

Fig. 1. The secure outsourcing diagram

agram shown in Fig. 1, where the dashed arrow indicates ob-
jective development using actual program F and the solid ar-
rows indicate outsourced development procedures using test
double.

Therefore, to make the outsourcing in Fig. 1 work it suffices
to design a successful rework R such that F ▷R(G′) :: γ holds
for an arbitrary program component G′ developed by external
developers, provided that G′ satisfies S(F )▷G′ :: Θ(γ). Stated
more formally, the definition of a secure mock is as follows.

Definition 4 (Secure mock). Let F be a program component,
Ψ be a security policy and γ be a specification. A secure mock
of F is a test double S(F ) such that the next proposition holds.

∀G′.(S(F )▷G′ :: Θ(γ) ⇒ F ▷R(G′) :: γ)∧▷S(F ) :: Ψ (♣)

where, Θ(γ) denotes a modified specification of γ and R
denotes a mapping between programs.

From the above definition, the secure mock construction
problem is defined as the following constraint satisfaction
problem.

Definition 5 (Secure Mock Construction). Let F be a pro-
gram, γ be a specification, and Ψ be a specification of security
policy. The secure mock construction problem is configured
with a triplet (F, γ,Ψ) and defined as the problem of finding
S(F ) ∈ Prog,Θ(γ) ∈ Spec and R ∈ Prog → Prog such that
Eq. (♣) is satisfied.

Example 2 (Secure mock with dummy parameter). Let F be a
program component defined in Table I. Let γ be the predicate:



∀n ∈ Name, a ∈ Age, r ∈ Residence.R(n, a, r, F (a, r))
where R denotes the predicate representing R0-R3 from
Section II. Let the security policy be Ψ(F,Residence) from
Definition 3.

Here, we introduce a dummy parameter d ∈ D = {α, β}.
For a secure mock construction problem (F, γ,Ψ), we may
solve the constraint by synthesizing a secure mock S(F )
shown in Table II, and the following Θ(γ),R.

Θ(γ) = ∀n, a, d ∈ D, r.R(n, a, r,S(F )(a, r, d))

R(G′)(n, a, r) =

{
G′(n, a, r, β) if r = Buzz City ∧ a > 50

G′(n, a, r, α) otherwise

Ψ(S(F ),Residence)
is satisfied because the
dummy parameter D
hides the effect of the
Residence parameter.
For an arbitrary pro-
gram component G′

such that S(F )▷G′ ::

TABLE II
A SECURE MOCK OF TABLE I

a:Age Residence D Premium
a ≥ 0 Foo Town α 1,000
a ≥ 0 Foo Town β 1,500

0 ≤ a ≤ 50 Buzz City α 1,000
0 ≤ a ≤ 50 Buzz City β 1,500

a > 50 Buzz City α 1,000
a > 50 Buzz City β 1,500
a ≥ 0 Barpolis α 1,000
a ≥ 0 Barpolis β 1,500

Θ(γ), we have F ▷R(G′) :: γ because of the following reason.
The conditional branch of R sets d to β for r = Buzz City ∧
a > 50. This allows the product owner to pick the part of
the deliverable component G′ corresponding to the row high-
lighted in bold in Table II. Otherwise, the branch sets d to α,
allowing the product owner to select the part corresponding to
the unhighlighted non-grayed-out rows. Therefore, R restores
implementation for input domain restricted by the domain of
Table I and the secure mock satisfies γ under the compo-
nent F .

Let us use the above example to illustrate the difference
in the three schools of TDD: the prior Detroit and London
schools, and the new Hachioji school that we propose. In the
Detroit school, since tests are conducted ideally with the actual
program component, the test double of F , S(F ), is simply
F itself. It does not satisfy Ψ. Therefore, the proprietary
knowledge may be leaked to the external developers and
the security may be compromised. In the London school,
tests are conducted with a test double of F that is not
guaranteed to satisfy Eq. (♣). For instance, it may use a
test double that just outputs a constant dummy value such as
S(F )(a, r) = 1000. This is secure (in the sense that it satisfies
Ψ), but it makes it difficult for the developers to verify the
requirements R0-R3 and may hamper their productivity. By
contrast, the Hachioji school that we propose allows the use
of a secure mock S(F ) like the one shown in Example 2 that
satisfies Eq. (♣) and guarantees both security and productivity.
We conclude the section with some open problems.

Problem 1 (Determining Security Policy). Determining an
appropriate security policy and formalizing as a predicate Ψ
is an open problem.

Problem 2 (Secure Mock Construction). Designing an al-
gorithm for solving the constraint satisfaction problem of
Definition 5 is another open problem.

IV. RELATED WORK

Software security is a long-standing problem in computer
science. Many ideas have been proposed, such as methods
for information flow control (IFC) [28]–[30] to formally
prevent information leakage, hardware-based solutions such
as trusted execution environments (TEE) [31]–[34], software
obfuscation techniques [1], [2], privacy ensuring methods
such as differential privacy [35], [36], software engineering
disciplines for developing secure software such as secure
development lifecycle (SDL) [37], and secure multi-party
computation (SMPC) [38], to name a few. However, these prior
works have primarily focused on the security of the completed
software. By contrast, we aim to address the challenge of
information leakage during the software development process.

Direct access to the source code of a proprietary component
can be prevented by obfuscation or an approach like MOR-
DEn [16]. However, as we have shown, that alone can be
insufficient for securing semantic proprietary knowledge. Our
work borrows fundamental concepts from the IFC research,
where the problem is to prevent leakage of confidential high-
security data to low-security outputs observable by unauthen-
ticated users [25], [39], [40]. Goguen and Meseguer defined
noninterference as the property that high-security data have
no effect on low-security observations [25]. Quantitative infor-
mation flow (QIF) is a framework for measuring the amount
of information leakage and assessing the boundedness of the
leakage amount [24], [30]. Our work adopted noninterference
to formalize the strongest security policy of a secure mock, that
is, we asserted that secret semantic characteristics of a program
component, such as proprietary risk assessment knowledge, do
not leak at all to external developers. We foresee that the QIF
approach of measuring information leakage may play a key
role in the development of a secure mock when a weaker
security policy is sufficient.

V. CONCLUSION AND FUTURE WORK

This paper introduced the Hachioji school as a novel
style for secure outsourced software development and test-
ing. Unlike the traditional London and Detroit schools, the
Hachioji school centers on the use of secure mock, which
is a mock component specifically designed to prevent confi-
dential information leakage. We formalized the secure mock
construction problem, clarifying how secure mocks can enable
safe collaboration with external developers without exposing
sensitive intellectual property.

Future work for the Hachioji school includes developing
practical methods for constructing secure mocks under diverse
security policies. Further research is needed to automate secure
mock generation and to integrate the Hachioji school approach
into real-world development pipelines. We hope that the Ha-
chioji school and the secure mock concept will inspire new
research at the intersection of software engineering, security,
and formal methods, and provide a foundation for secure
collaborative software development.
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