
Repairing Regex-Dependent String Functions
Nariyoshi Chida

nariyoshichidamm@gmail.com
NTT Social Informatics Laboratories

Japan

Tachio Terauchi
terauchi@waseda.jp
Waseda University

Japan

ABSTRACT
Regex-dependent string functions are string functions that take
regular expressions (regexes) as parameters and are popular means
of manipulating strings. They are frequently used for, e.g., string
transformation and substring search. Despite the importance, writ-
ing these functions is far from easy. To rectify this situation, recent
research made significant progress by proposing automated meth-
ods for synthesizing regexes based on Programming by Examples
(PBE). However, there still is a gap between these methods and
the goal of synthesizing regex-dependent string functions. First,
the existing methods focus on whole-string matching, whereas
most regex-dependent string functions adopt substring matching.
Second, the existing methods focus only on the regex, but many
commonly used regex-dependent string functions, such as replace
and replaceAll, also take as parameter a replacement to specify how
the substrings matched to the regex will be replaced.

This paper fills the gap by presenting the first PBE-based method
for repairing regex-dependent string functions. Like the recent
methods for regex synthesis, our algorithm builds on enumerative
search with pruning and SMT constraint solving, but with exten-
sions to support substring matching and replacement. The main
challenge is the large search space. We address the challenge by
novel ideas such as incorporation of origin information in exam-
ples to identify the locations of substrings to be matched, a new
substring-context-aware pruning technique, and a novel use of SMT
constraints to insert captures that can be referred from the replace-
ment. Additionally, we identify a novel necessary and sufficient
condition that can be used to detect and filter unrepairable instances.
We implemented our algorithm as a prototype tool called R2-DS
and evaluated it on real-world benchmarks. Results show that our
algorithm efficiently repairs the bugs in the real world and finds
high-quality repairs.

CCS CONCEPTS
• Software and its engineering → Software notations and
tools; • Theory of computation→ Regular languages.
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1 INTRODUCTION
Modern programming languages provide various built-in string
functions that take regular expressions (regexes) as parameters.
Such regex-dependent string functions include repalceAll, which
replaces all substrings matched to the given regex with possibly-
different strings, and search, which finds a substring matched to the
given regex. These regex-dependent string functions play an im-
portant role in string manipulations in programs. For example, they
are used for sanitizing untrusted substrings [33, 34], parsing [11],
and extracting substrings [29, 31]. Despite the importance, writing
regex-dependent string functions is far from an easy task and is a
common source of bugs in software [23, 32, 43].

In response, researchers have developed automated methods for
synthesizing regexes based on Programming By Examples (PBE) [12,
17, 18, 25, 28, 35, 42, 45]. However, despite the advances made by
these works, there is still a gap between them and synthesizing
regex-dependent string functions.

Substring Matching: Although the prior works focus on whole
string matching, most regex-dependent string functions adopt sub-
string matching. Therefore, even if we synthesize a regex using
the existing methods, there is no guarantee that the regex matches
the intended substrings when we use it through regex-dependent
string functions.

Replacement: Commonly used regex-dependent string func-
tions for string transformations such as replace and replaceAll take
as parameter a replacement to specify how to replace the substrings
matched by the given regex. Since the behavior of replaceAll de-
pends on both the regex and the replacement, it is not possible to
synthesize regex-dependent string functions by focusing only on
one of them.

In this paper, we fill the gap by proposing the first PBE-based
algorithm for repairing regex-dependent string functions. For space,
most of the paper focuses on replaceAll, one of the most popular
regex-dependent string functions [11]. However, the core ideas
are easily applicable to the other regex-dependent string functions
such as replace and search (cf. Sec. 6). Our algorithm takes a set
of examples that describe the desired input-output of the function
to be synthesized, and the goal is to find a pair of a regex and a
replacement such that replaceAll using the pair as the parameters
behaves consistently with the examples. To bias the solution to the
user-intended one, our algorithm can be given a "pre-repair" pair
of a regex and a replacement as an additional input so that the goal
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is not only to find the parameters consistent with the examples but
to find one that is syntactically close to the given pre-repair ones.

Like the recent methods for regex synthesis, our algorithm builds
on enumerative search with pruning and SMT constraint solving,
but with extensions to support substring matching and replace-
ment. The main challenge is the large search space. We address the
challenge by novel ideas such as incorporation of origin information
in examples to identify the locations of substrings to be matched,
a new substring-context-aware pruning technique, and a novel use
of SMT constraints to insert captures that can be referred from the
replacement. Additionally, we identify a novel necessary and suffi-
cient condition that can be used to detect and filter unrepairable
instances.

We have implemented our algorithm as a tool called R2-DS (Re-
pairer for Regex-Dependent String functions). R2-DS is designed
for JavaScript. This is needed because different regex engines of-
ten have different semantics that give different behavior to regex-
dependent string functions, and we have to pick one for concrete-
ness. However, we think that the core ideas of the paper are appli-
cable to regex-dependent string functions in others such as Python
and Java. We evaluated R2-DS on real-world benchmarks collected
from GitHub and StackOverflow. Results show that R2-DS can
find a high-quality repair efficiently. In summary, we make the
following contributions.

• We introduce the replaceAll-repair problem, which is the
first problem of repairing replaceAll function from examples.
Concretely, we incorporate origin information in examples
to help specifying the user’s intention and reasoning about
the repair easier (Sec. 4.1), define a novel origin semantics
of replaceAll functions (Sec. 4.2), and with them, formally
define the repair problem (Sec. 4.3).
• We show that, in contrast to the repair problems for regexes

studied in prior works, our repair problem has instances
that do not have a solution. Additionally, we show a novel
necessary and sufficient condition for our repair problem
instance to have a solution (Sec. 4.4).
• We propose the first PBE-based algorithm for repairing re-
placeAll functions (Sec. 5). Our algorithm supports substring
matching and replacement. Especially, our algorithm in-
corporates a new substring-context-aware pruning tech-
nique and a novel use of SMT constraints to insert cap-
tures. We show that our ideas are applicable to the other
regex-dependent string functions such as replace and search
(Sec. 6).
• We implement our algorithm in a tool called R2-DS and eval-

uate it on real-world benchmarks (Sec. 7). Results show that
R2-DS can efficiently repair the real-world bugs of regex-
dependent string functions. We also conduct an ablation
study which shows usefulness of the newly introduced tech-
niques of context-aware pruning and SMT-constraint-based
insertion of captures.

2 OVERVIEW
In this section, we give an example, inspired by StackOverflow
posts [39, 40], to illustrate how the users represent their intentions
using our examples, and how R2-DS solves the repair problem.

Motivating Example. The user wants to replace all substrings
of the form [𝑥]𝑦 [𝑥], where 𝑥 and 𝑦 are strings, with 𝑥 : 𝑦, unless
preceded by the character #. For example, the user wants to re-
place the text "[a]ab[a], [b]c[a]" with "a:ab, [b]c[a]" and
the text "#[b]de[b], [a]c[a]" with "#[b]de[b], a:c". For this
purpose, the user prepared the regex (?<!#)\[(1 .∗)1\].∗\[\1\] and
the replacement $1:$2 as parameters of replaceAll. Roughly, re-
placeAll functions behave like the following. For an input string
𝑤 with the regex reg and the replacement rep, it tries to match reg
at each position of 𝑤 from left to right. If the matching succeeds,
it replaces the matched substring with a string obtained from rep,
and otherwise, it does nothing, and the character at the position
remains. The user prepared \[(1 .∗)1\].∗\[\1\] to find substrings
of the form [𝑥]𝑦 [𝑥], where \[ and \] match the characters [ and ],
respectively, .∗ matches any string, and the backreference \1 refers
to the string matched by the capturing group (1 .∗)1. Additionally,
to rule out substrings preceded by #, the regex checks the context
using the negative lookbehind (?<!#). The user prepared $1:$2 to
construct 𝑥 : 𝑦 by referring to 𝑥 and 𝑦 of the matched substring
[𝑥]𝑦 [𝑥] using references $1 and $2.

Unfortunately, there are bugs in these user-prepared parameters.
First, the user prepared the reference $2 to refer to the substring
matched to the second .∗, but forgot to write a capturing group
whose index is 2. Therefore, the unassigned reference $2 is treated
as just the string $2. Second, the second .∗ matches the substring
"ab[a], [b]c" of the first text and not the intended substring "ab",
due to the behavior of regex engines. Consequently, for the two
texts, the outputs of replaceAll with the user-prepared parame-
ters are "a:$2" and "#[b]de[b], a:$2", respectively, which are
undesired.

Repair Problem. Our tool R2-DS can automatically repair the
bugs by solving the replaceAll-repair problem. The repair problem
takes a regex reg, a replacement rep, and a set E of examples, which
reflect the user’s intention about the repair. The solution is a pair
of a regex reg′ and a replacement rep′ such that replaceAll using
the pair as the parameters behaves consistently with the examples
in E and the pair is syntactically close to the given pre-repair ones,
or ⊥, meaning that there is no solution for the given instance. The
examples describe a desired input-output relation of the function
to be synthesized. We write an example as𝑤𝑖𝑛 ⇝ 𝑤𝑜𝑢𝑡 , where𝑤𝑖𝑛

and 𝑤𝑜𝑢𝑡 are the input and output with origin information. Origin
information is denoted by L𝑖 and M𝑖 , and L𝑖𝑤M𝑖 in the input (resp.
output) indicates that 𝑤 is the 𝑖th substring matched to the regex
(resp. obtained from the replacement). For example, L1𝑎M1𝑎L2𝑎M2 ⇝
L1𝑋 M1𝑎L2𝑋 M2 means that the user wants to replace the input 𝑎𝑎𝑎
with the output 𝑋𝑎𝑋 by replacing the first and the last characters 𝑎
with𝑋 . In the case of the motivating example, the user may prepare
the examples "L1[a]ab[a]M1, [b]c[a]⇝L1a:abM1, [b]c[a]" and
"#[b]de[b], L1[a]c[a]M1⇝#[b]de[b], L1a:cM1". Note that, in
PBE scenarios, the number of examples should be small for usability.

Repair Algorithm. R2-DS first checks whether the given in-
stance has a solution, and if no then it outputs ⊥ and halts im-
mediately. Otherwise, it starts the repair process. The instance in
our running example has a solution, and therefore, R2-DS moves
on to the repair process. Roughly, the repair process iterates the
following steps until it finds a solution: enumerating templates
(Searching Templates) and checking whether the templates can be
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instantiated into a solution using SMT constraint solving (SMT
Constraint Solving).

Searching Templates. R2-DS enumerates pairs of regex and re-
placement templates. A regex (resp. replacement) template is a regex
(resp. replacement) with holes, denoted by □. A hole is a placeholder
to be replaced with a concrete expression. Intuitively, it represents a
part that is currently under repair. To enumerate the templates, R2-
DS changes the structures of regex and replacement templates by
adding, reducing, and expanding holes. After some iterations, R2-DS
finds the pair of the templates ((?<!#)\[(1 .∗)1\]□∗\[\1\], $1:□).

SMT Constraint Solving. R2-DS checks whether or not the
template can be instantiated into a solution by replacing the holes
in the regex template with a character set and replacing the holes
in the replacement template with a character or a reference with
insertions of capturing groups into a regex as needed. To check
this, R2-DS prepares variables that correspond to the holes in the
templates, and constructs an SMT constraint 𝜙 over the variables
such that 𝜙 is satisfiable iff there is an instantiation of the regex
and replacement templates that satisfy the examples. A subtle point
here is that our constraints encode the information about insertions
of capturing groups. We do this by inserting a virtual capturing
group at each subexpression of the regex template to keep track
of the substring matched by the subexpression, and refer to the
information in the part of the constraint for replacement templates
to decide whether we actually should insert the capturing groups.

Next, R2-DS checks the satisfiability of the constraint using an
SMT solver. If satisfiable, it constructs the regex and the replacement
pair from the satisfying assignment. Otherwise, it moves on to the
template pruning to reduce the search space. Our pruning technique
builds on the existing techniques for regex synthesis [12, 17, 18,
28, 35]; Namely, we build over- and under-approximations from
the templates and check whether the approximations correctly
classify the examples. However, we extend them to be context-aware
(cf. Sec. 5.3 for details).

In the case of the above templates, the SMT constraint is satisfi-
able. From the satisfying assignment to the constraint, we obtain the
regex (?<!#)\[(1 .∗)1\](2[ˆ␣,\[\]]∗)2\[\1\] and the replacment
$1:$2. Note that the regex template was instantiated by replacing
its hole with the character set [ˆ␣,\[\]] that accepts any charac-
ter except for the white space ␣ and the characters ,, [, and ], the
replacement template was instantiated by replacing its hole with
the new reference $2, and a capturing group corresponding to the
new reference was inserted at an appropriate subexpression of the
regex.

3 PRELIMINARIES
This section briefly reviews the syntax and the semantics of regexes.
Since there are several variants of regexes in practice [5, 13, 20], we
focus on those of JavaScript, a popular programming language for
building web applications with regex-dependent string functions.
Specifically, this paper follows the semantics of regexes and regex-
dependent string functions of the ECMAScript® 2023 Language
Specification [22]. We first introduce the notations used in the
paper.

General Notation. We write N for the set of natural numbers
not including 0, N0 for N ∪ {0}, [𝑖 .. 𝑗] for the set {𝑖, 𝑖 + 1, · · · , 𝑗}

where 𝑖, 𝑗 ∈ N and 𝑖 ≤ 𝑗 , [𝑖] for [1..𝑖], and · for the concatenation of
sequences. We will omit · if it is clear from context. For a sequence
𝑙 , we write |𝑙 | for its length, and for 𝑖, 𝑗 ∈ {0, 1, · · · , |𝑙 | − 1} with
𝑖 ≤ 𝑗 , 𝑙 [𝑖] for the 𝑖th element, 𝑙 [𝑖 .. 𝑗] for 𝑙 [𝑖] · 𝑙 [𝑖 + 1] · · · 𝑙 [ 𝑗], and
𝑙 [𝑖 .. 𝑗) for 𝑙 [𝑖 .. 𝑗 − 1] if 𝑖 ≤ 𝑗 − 1 and otherwise, i.e., if 𝑖 > 𝑗 − 1, 𝜖 .
We use _ to omit unimportant elements. For a function 𝑓 , we use
𝑑𝑜𝑚(𝑓 ) to denote the domain of 𝑓 .

Regex. Let us fix a finite alphabet Σ. The syntax of regexes is
defined:

𝑟 ::= [𝐶] | 𝜖 | 𝑟 · 𝑟 | 𝑟 |𝑟 | 𝑟 {𝑖, 𝑗} | 𝑟 {𝑖, 𝑗}? |
(𝑘𝑟 )𝑘 | \𝑘 | (?=𝑟 ) | (?!𝑟 ) | (?<=𝑟 ) | (?<!𝑟 )

, where 𝐶 ⊆ Σ, 𝑖 ∈ N0, 𝑗 ∈ N0 ∪ {∞} with 𝑖 ≤ 𝑗 , and 𝑘 ∈ N.
Here, 𝑖 ≤ ∞ for all 𝑖 ∈ N0. [𝐶] is a character set, which matches a
character in 𝐶 . For readability, we write 𝑎 for [{𝑎}], [𝑎𝑏 · · · 𝑐] for
[{𝑎, 𝑏, · · · , 𝑐}], . for [Σ], and [ˆ𝐶] for [Σ \𝐶]. The operators 𝜖 and
𝑟 ·𝑟 (or just 𝑟𝑟 when there is no ambiguity) are the empty string and
the concatenation, respectively, and their semantics are standard.
The operator 𝑟1 |𝑟2 is the deterministic union that first tries to match
𝑟1, and if the whole matching cannot succeed with 𝑟1, then it tries
to match 𝑟2. The operator 𝑟 {𝑖, 𝑗} (resp. 𝑟 {𝑖, 𝑗}?) is the greedy (resp.
lazy) bounded repetition, which tries to match 𝑟 at least 𝑖 times and
at most 𝑗 times as many (resp. few) as possible if 𝑗 ∈ N0. When
𝑗 = ∞, it tries to match 𝑟 at least 𝑖 times as many (resp. few) as
possible. From these operators, we can construct other quantifiers
as syntactic sugar: 𝑟∗ = 𝑟 {0,∞}, 𝑟∗? = 𝑟 {0,∞}?, 𝑟+ = 𝑟 {1,∞},
𝑟+? = 𝑟 {1,∞}?, 𝑟 ? = 𝑟 {0, 1}, and 𝑟 ?? = 𝑟 {0, 1}?.

The remaining operators are real-world extensions. The opera-
tors (𝑘𝑟 )𝑘 and \𝑘 are the capturing group and the backreference,
respectively. The capturing group (𝑘𝑟 )𝑘 tries to match 𝑟 and, if the
matching succeeds, it stores the matched substring into an envi-
ronment with the index 𝑘 . An environment Γ is a mapping from
an index 𝑘 to the substring matched to the 𝑘th capturing group.
The backreference \𝑘 refers to the substring matched to the corre-
sponding capturing group (𝑘𝑟 )𝑘 . If there is no such substring (i.e.,
𝑘 ∉ 𝑑𝑜𝑚(Γ)), \𝑘 is evaluated to an empty string 𝜖 . Also, we assume
that every capturing group in a regex has a unique index. That is,
our semantics follows 𝜖- and no-label-repetition-semantics [5], and
this is actually consistent with the ECMAScript® Language Spec-
ification. The operators (?=𝑟 ) and (?!𝑟 ) are positive and negative
lookaheads, respectively, which try to match 𝑟 without any charac-
ter consumption, such that (?=𝑟 ) (resp. (?!𝑟 )) succeeds if 𝑟 succeeds
(resp. fails). The operators (?<=𝑟 ) and (?<!𝑟 ) are positive and nega-
tive lookbehinds, respectively. They are analogous to lookaheads,
but with the direction of the matching reversed, i.e., lookbehinds
try to match from right to left.

We next briefly review the semantics of regexes. In this paper,
we use the formal semantics defined by Chida and Terauchi [18]
for repairing regexes that follows the ECMAScript® 2023 Language
Specification. The semantics is defined as the deterministic match-
ing relation (𝑟,𝑤, 𝑝) ⇓ 𝑥 , where 𝑥 ∈ {(𝑝′, Γ′), failed}.1 Roughly,
this states that if 𝑥 = (𝑝′, Γ′), then the matching of 𝑟 on the input
string𝑤 at the position 𝑝 succeeds, changes the position 𝑝 to 𝑝′, and
captures substring as described by the environment Γ′. If 𝑥 = failed,

1We use a simplified version of the relation introduced in [18]. This corresponds to
the judgement (𝑟, 𝜖, 𝑤, 𝑝, ∅, forward, true) ⇓ _, where 𝜖 is a continuation regex, ∅ is
an environment, forward is a direction of the matching, and true is a flag, in [18].
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it means that the matching fails at that state. We do not describe the
rules of the relation in this paper and refer interested readers to [18]
for full details. As pointed out in [38], the semantics introduced in
[18] handles option operators 𝑟 ? and 𝑟 ?? incorrectly. To ensure the
correctness, we correct the bug by introducing bounded repetitions
that were not considered in [18], extending the semantics of [18]
with rules for them, and encoding options by them as mentioned
above. The details can be found in the long version of this paper.

4 THE REPAIR PROBLEM
In this section, we define the replaceAll-repair problem. We first
define in Sec. 4.1 strings with origin information and with them
define examples for the problem. Next in Sec. 4.2, we define an
origin semantics of replaceAll functions and formally define what it
means for a regex and a replacement to be consistent with examples.
In Sec. 4.3, we define the repair problem and show that it has
unsolvable instances. Finally, we identify a necessary and sufficient
condition for a problem instance to have a solution in Sec. 4.4.

4.1 String with Origin Information
A string with origin information is a pair (𝑤,𝜂) where 𝑤 is a string
and 𝜂 is a list of pairs of integers of the form [(𝑝1, 𝑝′1), (𝑝2, 𝑝

′
2), · · · ,

(𝑝𝑛, 𝑝′𝑛)] for some 𝑛 ∈ N0 (𝜂 = 𝜖 if 𝑛 = 0) satisfying 𝑝𝑖 , 𝑝
′
𝑖
∈ N0 and

𝑝𝑖 ≤ 𝑝′
𝑖

for all 𝑖 ∈ [𝑛], 𝑝′
𝑗
≤ 𝑝 𝑗+1 for all 𝑗 ∈ [𝑛 − 1], and 𝑝𝑖 < 𝑝 𝑗 for

all 𝑖 < 𝑗 where 𝑖, 𝑗 ∈ [𝑛]. For a string with origin information (𝑤,𝜂),
each element 𝜂 [𝑖] = (𝑝, 𝑝′) of the origin information 𝜂 indicates
the substring 𝑤 [𝑝..𝑝′). From this, we assume that 𝑝′ ≤ |𝑤 | for
each element. For readability, we use L𝑖 ·M𝑖 to denote a substring
represented by the 𝑖th element of 𝜂, i.e., 𝑤 [𝑝..𝑝′) for (𝑤,𝜂) with
𝜂 [𝑖] = (𝑝, 𝑝′). For example, we represent the string with origin
information (𝑎𝑏𝑐𝑑, [(0, 1), (2, 3), (4, 4)]) as L1𝑎M1𝑏L2𝑐M2𝑑L3M3.

An example is a tuple (𝑤,𝜂, 𝜃 ), where (𝑤,𝜂) is a string with ori-
gin information and 𝜃 is output fragments which is a list of strings
such that |𝜂 | = |𝜃 |. Here, 𝑤 is an input to replaceAll functions,
and 𝜂 and 𝜃 describe how the output is obtained from the input.
Specifically, an example (𝑤,𝜂, 𝜃 ) states that regexes of desired re-
placeAll functions should match only the substrings 𝑤 [𝑝, 𝑝′) for
each 𝜂 [𝑖] = (𝑝, 𝑝′) where 0 ≤ 𝑖 < |𝜂 |, and the matched substrings
should be replaced with the output fragment 𝜃 [𝑖]. For instance, the
example (𝑎𝑏𝑎𝑐, [(0, 1), (2, 3)], [𝑑,𝑑]) reflects the user’s intention
that for the given input 𝑎𝑏𝑎𝑐 , desired replaceAll functions should
return the output 𝑑𝑏𝑑𝑐 whose first and second characters 𝑑 of the
output originates from the first and second characters 𝑎 of the in-
put, respectively. Hereafter, we use output(𝑤,𝜂, 𝜃 ) to denote the
output obtained from 𝑤 by replacing all substrings 𝑤 [𝑝, 𝑝′), where
𝜂 [𝑖] = (𝑝, 𝑝′), with 𝜃 [𝑖]. Also, for readability, we use 𝑤𝑖𝑛 ⇝ 𝑤𝑜𝑢𝑡

to denote an example (𝑤,𝜂, 𝜃 ), where 𝑤𝑖𝑛 is the string with origin
information (𝑤,𝜂) and𝑤𝑜𝑢𝑡 is the string with origin information ob-
tained from𝑤 by replacing all occurrences L𝑖𝑤 ′M𝑖 of𝑤𝑖𝑛 with L𝑖𝜃 [𝑖−
1]M𝑖 . For instance, we write the above example as L1𝑎M1𝑏L2𝑎M2𝑐 ⇝
L1𝑑M1𝑏L2𝑑M2𝑐 and output(𝑎𝑏𝑎𝑐, [(0, 1), (2, 3)], [𝑑,𝑑]) = 𝑑𝑏𝑑𝑐 .

4.2 Origin Semantics
We first review the replaceAll function and then give its origin
semantics. The replaceAll function takes a string𝑤 , a regex reg, and
a replacement rep, and returns a string by replacing the substrings

𝑝 < |𝑤 | (reg,𝑤, 𝑝) ⇓ (𝑝′, Γ) JrepK Γ = 𝑥

𝑝′′ = ite(𝑝′ ≠ 𝑝, 𝑝′, 𝑝 + 1) (𝑤, 𝑝′′, reg, rep) ↩→ (𝑤 ′, 𝜂)
(𝑤, 𝑝, reg, rep) ↩→ (𝑥 ·𝑤 ′, [(𝑝, 𝑝′)] · 𝜂)

𝑝 = |𝑤 | (reg,𝑤, 𝑝) ⇓ (𝑝′, Γ) JrepK Γ = 𝑥

(𝑤, 𝑝, reg, rep) ↩→ (𝑥, [(𝑝, 𝑝′)])

𝑝 < |𝑤 | (reg,𝑤, 𝑝) ⇓ failed (𝑤, 𝑝 + 1, reg, rep) ↩→ (𝑤 ′, 𝜂)
(𝑤, 𝑝, reg, rep) ↩→ (𝑤 [𝑝] ·𝑤 ′, 𝜂)

𝑝 = |𝑤 | (reg,𝑤, 𝑝) ⇓ failed
(𝑤, 𝑝, reg, rep) ↩→ (𝜖, [])

Figure 1: Rules for replaceAll. The function ite is defined by:
ite(true, 𝐴, 𝐵) = 𝐴 and ite(false, 𝐴, 𝐵) = 𝐵.

matched to reg with the strings constructed from rep. Replacements
are defined by the following syntax: 𝑠 ::= 𝜖 | 𝑎 | $𝑖 | 𝑠 · 𝑠 , where 𝜖
is the empty string, 𝑎 is a character, $𝑖 is a reference, and 𝑠 · 𝑠 is a
concatenation. A reference is of the form $𝑖 where 𝑖 ∈ N, and like a
backreference of regexes, it refers to the substring associated with
the index 𝑖 in an environment Γ, i.e., Γ(𝑖). Hereafter, we refer to
replaceAll(reg, rep) as replaceAll with the regex parameter reg and
the replacement parameter rep.

The origin semantics of replaceAll is defined as the relation
(𝑤, 𝑝, reg, rep) ↩→ (𝑤 ′, 𝜂), where 𝑤 and 𝑤 ′ are strings, 𝑝 is a po-
sition in 𝑤 , reg is a regex, rep is a replacement, and 𝜂 is an origin
information. Roughly, the relation (𝑤, 𝑝, reg, rep) ↩→ (𝑤 ′, 𝜂) states
that running replaceAll(reg, rep) on 𝑤 from the position 𝑝 outputs
the string with origin information (𝑤 ′, 𝜂).

Figure 1 shows the rules defining the semantics. Here, we use
the deterministic matching relation (reg,𝑤, 𝑝) ⇓ _ described in
Sec. 3 to obtain the results of regex matching. JrepK Γ denotes the
string constructed from the replacement rep under the environment
Γ. Formally, it is defined by: J𝜖K Γ = 𝜖 , J𝑎 · repK Γ = 𝑎 · (JrepK Γ),
and J$𝑖 · repK Γ = Γ(𝑖) · (JrepK Γ). Here, we let Γ(𝑖) = 𝜖 if 𝑖 ∉

𝑑𝑜𝑚(Γ).2 There is a rule per each of the following four situations:
the matching (reg,𝑤, 𝑝) succeeds or not and the position is the end
of the input string or not. If the matching succeeds, i.e., (reg,𝑤, 𝑝) ⇓
(𝑝′, Γ), then the function appends the string JrepK Γ and the origin
information (𝑝, 𝑝′) to the output, and continues the replacement
from the position 𝑝′ if 𝑝 ≠ 𝑝′ and 𝑝 + 1 if 𝑝 = 𝑝′. If the matching
fails, it appends the character 𝑐 to the output, where 𝑐 = 𝑤 [𝑝] if
𝑝 < |𝑤 | and otherwise 𝑐 = 𝜖 , and continues the matching from the
position 𝑝 + 1. If the position 𝑝 reaches the end of 𝑤 , i.e., 𝑝 = |𝑤 |, it
behaves similarly to the above rules, but the replacement ends.

Example 4.1. Consider the evaluation of replaceAll(𝑎(?=(1 .)1),
𝑋$1𝑋 ) on the input string 𝑎𝑏. The derivation tree is as follows.
Here, 𝐴𝑖 denotes (𝑎(?=(1 .)1), 𝑎𝑏, 𝑖) for 𝑖 ∈ {0, 1}.
2This differs from the actual behavior of replaceAll in ECMAScript. Namely, in the
actual replaceAll, if a reference 𝑖 is unassigned (i.e., 𝑖 ∉ 𝑑𝑜𝑚 (Γ)), the string constructed
from $𝑖 depends on the regex. Specifically, if the number of capturing groups in the
regex is less than 𝑖 , $𝑖 is evaluated to the string $𝑖 ; otherwise, it is evaluated to 𝜖 .
Although it is easy to modify the rules to follow the actual behavior, for simplicity,
our rules always evaluate unassigned references to 𝜖 . Note that if one wants to write
the string $𝑖 in a replacement, they can do so without using an unassigned reference
by writing $$𝑖 [22].
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· · ·
𝐴0 ⇓ (1, {(1, 𝑏)}) J𝑋$1𝑋 K {(1, 𝑏)} = 𝑋𝑏𝑋 𝐵

(𝑎𝑏, 0, 𝑎(?=(1 .)1), 𝑋$1𝑋 ) ↩→ (𝑋𝑏𝑋𝑏, [(0, 1)])
The subderivation 𝐵 is as follows.

𝐴1 ⇓ failed
· · ·

(𝑎𝑏, 2, 𝑎(?=(1 .)1), 𝑋$1𝑋 ) ↩→ (𝜖, [])
(𝑎𝑏, 1, 𝑎(?=(1 .)1), 𝑋$1𝑋 ) ↩→ (𝑏, [])

That is, for the input string 𝑎𝑏, replaceAll(𝑎(?=(1 .)1), 𝑋$1𝑋 ) re-
places the substring 𝑎 with the string 𝑋𝑏𝑋 and leaving the other
parts unchanged.

We are now ready to define the notion of consistency with exam-
ples.

Definition 4.2 (Consistency). We say that replaceAll(reg, rep) is
consistent with (or, satisfies) an example (𝑤,𝜂, 𝜃 ) if (𝑤, 0, reg, rep) ↩→
(output(𝑤,𝜂, 𝜃 ), 𝜂). For a set of examplesE, we say that replaceAll(reg,
rep) satisfies the set of examples if it satisfies all examples in E.

For instance, replaceAll(𝑎(?=(1 .)1), 𝑋$1𝑋 ) satisfies the example
(𝑎𝑏, [(0, 1)], [𝑋𝑏𝑋 ]) because output(𝑎𝑏, [(0, 1)], [𝑋𝑏𝑋 ]) = 𝑋𝑏𝑋𝑏

and (𝑎𝑏, 0, 𝑎(?=(1 .)1), 𝑋$1𝑋 ) ↩→ (𝑋𝑏𝑋𝑏, [(0, 1)]).

4.3 Problem Formulation
Before we define the repair problem, we consider a metric to mea-
sure the quality of a repair. We base our metric on those from the
prior works for regex synthesis [17, 18, 35]. They used a notion
called edit distance between two regexes so that a regex of a short
distance from a pre-repair regex is deemed to be of high quality.
The metric is justified by the assumption that the pre-repair regex
may be incorrect but close to the intended one. Like the prior works,
we deem parameters (i.e., a regex and a replacement) of a short
distance from pre-repair parameters to be high quality. Since we
consider repairing a replacement in addition to a regex, we use the
sum of edit distances of the two as the metric, but with a certain
modification on the definition of edit distance regarding insertions
of capturing groups.

Definition 4.3 (Capture-insertion relation). Given a set of integers
𝐼 , we define the relation⇒𝐼 over regexes where 𝑟 ⇒𝐼 𝑟

′ iff it is
possible to rewrite 𝑟 to 𝑟 ′ using associativity of the binary opera-
tors (i.e., the concatenation and the union) and inserting capturing
groups (𝑖 ·)𝑖 where 𝑖 ∉ 𝐼 .

As explained below, the relation plays the role of inserting cap-
turing groups into a regex at no cost. Let |𝑟 | denote the number of
AST nodes of 𝑟 .

Definition 4.4 (Edit Distance). For subtrees 𝑟1, 𝑟2, · · · , 𝑟𝑛 of a regex
𝑟 , the edit 𝑒 = 𝑟 [𝑟 ′1/𝑟1, · · · , 𝑟

′
𝑛/𝑟𝑛] replaces 𝑟𝑖 with 𝑟 ′

𝑖
where 𝑖 ∈ [𝑛].

The cost of the edit is
∑
𝑖∈[𝑛] , |𝑟𝑖 | + |𝑟 ′𝑖 |. Then, for two regexes 𝑟1

and 𝑟2, the edit distance between 𝑟1 and 𝑟2 is the minimum cost of
an edit that rewrites 𝑟1 to some 𝑟 ′2 s.t. 𝑟 ′2 ⇒𝐼 𝑟2 where 𝐼 is the set
of indexes of capturing groups and backreferences in 𝑟 ′2.

We lift the edit distance to replacements by interpreting a re-
placement as a regex consisting of a character set, a backreference,
and a concatenation. Then, the edit distance between two param-
eters 𝑓1 = (reg1, rep1) and 𝑓2 = (reg2, rep2), denoted 𝐷 (𝑓1, 𝑓2), is
𝑑reg + 𝑑rep , where 𝑑reg (resp. 𝑑rep) is the edit distance between reg1
and reg2 (resp. rep1 and rep2). For example, for 𝑓1 = (𝑎 · 𝑏 · 𝑐, 𝑑 · 𝑒)

and 𝑓2 = (𝑒∗ · (1𝑏 · 𝑐)1, 𝑑 · 𝑓 · $1), 𝐷 (𝑓1, 𝑓2) = 7 because the edit
distance between the regexes is 3 (i.e., the cost of replacing 𝑎 with
𝑒∗) and the edit distance between the replacements is 4 (i.e., the
cost of replacing 𝑒 with 𝑓 · $1). Note that there is no cost to insert a
capturing group into 𝑏 · 𝑐 because 𝑒∗ · 𝑏 · 𝑐 ⇒∅ 𝑒∗ · (1𝑏 · 𝑐)1.

Note that edit distance used in prior works [17, 18, 35] is a re-
striction of Definition 4.4 obtained by asserting 𝑟 ′2 = 𝑟2, i.e., it is
the minimum cost of an edit that rewrites 𝑟1 to 𝑟2. We extend the
prior definition by the capture-insertion relation because insertions
of capturing groups are quite common in practice (e.g., [39, 41])
but the prior definition allots high costs to such an insertion as it
would be represented by a replacement of 𝑟 to (𝑖𝑟 )𝑖 which costs
2 · |𝑟 | +1. We refer to the long version of this paper for further details
including real-world cases that motivated our new definition.

It is worth noting that we can compute the minimum edit dis-
tances efficiently by treating binary operators as 𝑛-ary operators
and computing the normal form. For example, ·(𝑎, 𝑏, 𝑐) is the unique
normal form of both (𝑎 · 𝑏) · 𝑐 and 𝑎 · (𝑏 · 𝑐).

We now define the repair problem.

Definition 4.5 (The Repair Problem). Given a regex reg, a replace-
ment rep, and a set of examples E, the replaceAll-repair problem is
the problem of synthesizing a pair 𝑓2 = (reg′, rep′) of a regex and
a replacement such that 𝑓2 satisfies E and the distance between
𝑓1 = (reg, rep) and 𝑓2 is minimal, i.e., for any 𝑓3 = (reg′′, rep′′) that
satisfies E, 𝐷 (𝑓1, 𝑓2) ≤ 𝐷 (𝑓1, 𝑓3).

Our repair problem is NP-hard. The proof is by a reduction from
the extraction-regex-repair problem [18] that is known as NP-hard.
We show the proof in the long version of this paper.

Theorem 4.6. The repair problem is NP-hard.

While a PBE regex repair or synthesis problem often has the
guarantee that every instance has some solution [17, 18, 35], our
problem has unsolvable instances.

Theorem 4.7. The repair problem has an unsolvable instance.

Proof. There is no pair of a regex and a replacement that satis-
fies the set of examples E = {L1𝑎M1 ⇝ L1𝑏M1, L1𝑐M1 ⇝ L1𝑑M1}. To
see this, note that the output fragments require that the replacement
should be evaluated to the different characters 𝑏 and 𝑑 depending
on the input string, and so, the replacement must have a reference.
However, a reference can only refer to the characters that appear
in the inputs, but these characters do not appear in the inputs.
Therefore, there is no replacement that satisfies the examples. □

4.4 Necessary and Sufficient Condition
We now turn to identifying a necessary and sufficient condition
for a problem instance to have a solution. We first introduce some
notations. We use 𝑜𝑢𝑡 (E) to denote the set of all output fragments
in E, i.e., 𝑜𝑢𝑡 (E) = {𝑤 ∈ Σ∗ | (_, _, 𝜃 ) ∈ E ∧ 𝜃 [𝑖] = 𝑤 for some 𝑖}.
Also, we define the function filter(𝑤,𝑤 ′) that returns a string ob-
tained from 𝑤 by replacing all characters that appear in 𝑤 ′ with 𝜖 .
For example, filter(𝑎𝑏𝑐𝑑𝑒𝑏, 𝑏𝑑) = 𝑎𝑐𝑒 . We say that 𝑣 is a scattered
substring of 𝑤 if 𝑤 = 𝑤1 · 𝑣 [0] ·𝑤2 · 𝑣 [1] · · ·𝑤𝑚 · 𝑣 [|𝑣 | − 1] ·𝑤𝑚+1.
We now show the condition.

Theorem 4.8. A repair problem instance (reg, rep, E) is solvable
if and only if the following holds: There exists a string𝑤 ∈ Σ∗ s.t. for
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Algorithm 1: The Repair Algorithm
Input: Regex reg, Replacement rep, Set of Examples E
Output: Solution (reg′, rep′) or ⊥ if there is no solution

1: if isSolvable(E) = false then
2: return ⊥
3: 𝑄 ← {(reg, rep)}
4: while 𝑄 is not empty do
5: (𝑡reg, 𝑡rep) ← 𝑄.𝑝𝑜𝑝 ()
6: if isFeasible(𝑡reg) = true ∧ isFeasible(𝑡rep) = true then
7: if preTest(𝑡reg) = true ∧ preTest(𝑡rep) = true then
8: 𝜙 ← genConst(𝑡reg, 𝑡rep, E)
9: if 𝜙 is satisfiable then

10: (reg′, rep′) ← completion(𝑡reg, 𝑡rep, 𝜙)
11: return (reg′, rep′)
12: 𝑄.𝑝𝑢𝑠ℎ(expandHole(𝑡reg, 𝑡rep))
13: 𝑄.𝑝𝑢𝑠ℎ(addOrReduceHole(𝑡reg, 𝑡rep))

all𝑤 ′ ∈ 𝑜𝑢𝑡 (E),𝑤 is a scattered substring of𝑤 ′ and filter(𝑤 ′,𝑤𝑖𝑛)
is a scattered substring of𝑤 , where𝑤𝑖𝑛 is the input string of𝑤 ′.

This condition rules out unsolvable instances. For instance, let us
consider the set of examples {L1𝑎M1 ⇝ L1𝑎𝑏M1, L1𝑎𝑎M1 ⇝ L1𝑎𝑏𝑏M1}
which does not satisfy the condition. To see that it is indeed un-
solvable, note that from L1𝑎𝑎M1 ⇝ L1𝑎𝑏𝑏M1, we can see that the
replacement of a solution must have 𝑏𝑏 in the subexpression. This
is because the input 𝑎𝑎 does not contain 𝑏, and therefore, we cannot
use a reference to construct 𝑏𝑏. But then the output fragment of
the other example (i.e., L1𝑎𝑏M1) must have a substring 𝑏𝑏, which it
does not.

The condition is also a sufficient condition. Roughly, this is
shown by constructing a replacement that is consistent with all
output fragments by using references, and a regex that matches
correct substrings denoted by the origin information and extracts
substrings that are required by the references in the replacement.
We refer to the long version of this paper for the proof.

We emphasize that the condition is not only of theoretical inter-
est but also useful in practice. For instance, let us consider the case
where the user wants to replace all occurrences of **𝑥** in a Mark-
down document with <strong>𝑥</strong>, where 𝑥 is a string,
e.g., replacing “**a** and **b**” with “<strong>a</strong> and
<strong>b</strong>”. For this purpose, the user may prepare the
example:

L1**M1aL2**M2 and L3**M3bL4**M4 ⇝
L1<strong>M1aL2</strong>M2 and L3<strong>M3bL4</strong>M4 .

While the example may at first seem intuitive, it turns out that there
is no solution for this example. Indeed, the example violates the
condition stipulated in Theorem 4.8, and automatically detected so
by the algorithm given in Sec. 5.1. The user can then try to come
up with a different example, e.g.,

L1**a**M1 and L2**b**M2 ⇝
L1<strong>a</strong>M1 and L2<strong>b</strong>M2

which turns out to be solvable, and our tool is able to return a repair
that is consistent with the example.

5 THE REPAIR ALGORITHM
Algorithm 1 overviews our repair algorithm. Our algorithm takes
a repair problem instance (reg, rep, E). It outputs either a pair
(reg′, rep′) of a regex and a replacement that satisfies E and is min-
imal w.r.t. the edit distance from the input (reg, rep) or ⊥, meaning
that the given instance does not have a solution. Our algorithm con-
sists of five steps: checking the necessary and sufficient condition
(lines 1-2), initializing a template (line 3), pruning infeasible tem-
plates (lines 6-7), SMT constraint solving (lines 8-10), and template
enumeration (lines 12 and 13). We next explain each step.

Checking Necessary and Sufficient Condition. Our algorithm
first checks whether or not the given instance has a solution (line 1)
by checking the condition given in Theorem 4.8. If the check fails,
our algorithm immediately halts by outputting⊥ (line 2). Otherwise,
it starts the repair process. The details are described in Sec. 5.1.

Initialize a Template.Our algorithm maintains a priority queue
𝑄 of pairs of a regex template and a replacement template. A regex
(resp. replacement) template 𝑡reg (resp. 𝑡rep) is a regex (resp. replace-
ment) with hole □. A hole is a placeholder to be replaced with a
concrete regex (resp. replacement). During the repair process, our
algorithm adds/expands/reduces the holes to change the structure
of the templates (cf. Template Enumeration). As discussed in
Sec 4.3, we treat the concatenation and the union as 𝑛-ary opera-
tors in the templates. Entries in 𝑄 are ordered according to the edit
distance from the input regex and replacement pair in ascending
order.3 This ensures the minimality of repaired parameters. Initially,
our algorithm pushes the input pair (reg, rep) into 𝑄 (line 3).

Pruning Infeasible Templates. Then, our algorithm retrieves
the top element (𝑡reg, 𝑡rep) of 𝑄 (line 5), and uses lightweight tech-
niques to prune infeasible regex and replacement templates and
reduce the search space (line 6). We first describe the pruning
technique for regex templates. We define some terminologies. For
(𝑤,𝜂, 𝜃 ) ∈ E, we call the position 𝑖 in 𝑤 positive if there exists 𝑗 s.t.
𝜂 [ 𝑗] = (𝑝, 𝑝′) and 𝑝 ≤ 𝑖 ≤ 𝑝′, and negative otherwise. Our pruning
technique checks for each (𝑤,𝜂, 𝜃 ) ∈ E and positive position 𝑝 in
𝑤 s.t. 𝜂 [𝑖] = (𝑝, 𝑝′) (resp. negative position 𝑝), if 𝑡reg cannot be
instantiated into a regex that matches the substring 𝑤 [𝑝, 𝑝′) (resp.
fails to match 𝑤 at 𝑝). If so, we do not need to consider 𝑡reg or the
templates obtained by expanding the holes in 𝑡reg and so can safely
prune those templates. To check this, our technique constructs
context-aware over- and under-approximations of 𝑡reg and checks
their matchings with the substrings at the positions. The pruning
technique is implemented by the predicate isFeasible(𝑡reg) whose
details are deferred to Sec. 5.3.

As for pruning replacement templates, recall that a replacement
can be seen as a regex composed of a character, a concatenation,
and a backreference. Therefore, we build an over-approximation
𝑟⊤ from the replacement template by applying the methods from
the prior work [17, 18, 35] and check whether the regex accepts
all output fragments, i.e., we check ∀𝑤 ∈ 𝑜𝑢𝑡 (E).𝑤 ∈ 𝐿(𝑟⊤). If the
check fails, then we safely prune the template and any templates
obtainable by expanding the holes in it. The check is implemented
by the predicate isFeasible(𝑡rep).

3The edit distance between templates is defined in the same manner as that of regexes
and replacements.
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SMT Constraint Solving. If the templates (𝑡reg, 𝑡rep) pass the
pruning, then our algorithm checks whether they can be instanti-
ated into a regex and replacement pair that satisfies the examples
by replacing holes in the regex template with character sets and
replacing holes in the replacement template with characters or
references. To check this, our algorithm constructs an SMT con-
straint that is satisfiable iff there exists such an instantiation (line 8).
The constraint contains the boolean variables that correspond to
the holes in the templates, and they represent the ways of filling
the corresponding holes with concrete expressions. Therefore, if
the constraint is satisfiable, we can reconstruct the instantiation
from the satisfying assignment. The details of the SMT constraint
generation method are discussed in Sec. 5.2.

After building the constraint, our algorithm checks its satisfia-
bility using an off-the-shelf SMT solver such as Z3 [21] (line 9). If it
is satisfiable, our algorithm reconstructs a regex and replacement
pair from 𝑡reg and 𝑡rep using the assignments (line 10) as remarked
above, and applies the generalization method introduced in [35]
that uses MaxSMT solving to the regex to enhance the quality of
the repair. Namely, it tries to replace character sets that filled the
holes with common character sets such as [𝑎-𝑧], [𝐴-𝑍 ], and [0-9]
while maintaining consistency with the examples. Note that the
generalization process does not affect the edit distance.

Template Enumeration. If the templates (𝑡reg, 𝑡rep) cannot
be a solution, our algorithm changes their structures to generate
additional templates. Specifically, our algorithm first expands a hole
in the templates (line 12) by replacing it with an expression whose
immediate subexpressions are holes. For example, let 𝑡reg = 𝑎 |□
and 𝑡rep = □ · 𝑏. Then, expandHole(𝑡reg, 𝑡rep) = {(𝑎 |𝜖, 𝑡rep), (𝑎 | (□ ·
□), 𝑡rep), · · · , (𝑎 | (?<!□), 𝑡rep)}∪{(𝑡reg,□·□·𝑏)}. Next, our algorithm
adds a hole in the templates by replacing the leaf subexpression
(i.e., a character set, 𝜖 , or a backreference for regex templates and
a character or a reference for replacement templates) with a hole
(line 13). Additionally, our algorithm reduces an expression whose
immediate subexpressions are holes with a hole. For example, let
𝑡reg = □∗ ·𝑎 and 𝑡rep = □ ·□ ·𝑏. Then, addOrReduceHole(𝑡reg, 𝑡rep) =
{(□∗ · □, 𝑡rep), (□ · 𝑎, 𝑡rep), (𝑡reg,□ · □ · □), (𝑡reg,□ · 𝑏)}. This part is
essentially the same as the prior works on regex synthesis and
repair [17, 18, 35] with a straightforward adoption to replacement
templates, and therefore, we refer to them for more details.

5.1 Checking the Condition
Recall that the condition shown in Theorem 4.8 requires that there
exists a string 𝑤 ∈ Σ∗ such that for all output fragments 𝑤𝑜𝑢𝑡 ∈
𝑜𝑢𝑡 (E), (i)𝑤 is a scattered substring of𝑤𝑜𝑢𝑡 and (ii) filter(𝑤𝑜𝑢𝑡 ,𝑤𝑖𝑛)
is a scattered substring of 𝑤 , where 𝑤𝑖𝑛 is the input string of 𝑤𝑜𝑢𝑡 .
We show an efficient method for checking the condition. Our key
insight is that we can represent the strings that satisfy (i) and (ii) as
pure regexes (i.e., regexes that do not have lookarounds and back-
references), and check the existence of such a string 𝑤 by checking
the non-emptiness of the intersection of these pure regexes. Pre-
cisely, in the case of (i), for each 𝑤𝑜𝑢𝑡,𝑖 ∈ 𝑜𝑢𝑡 (E), we can construct
a regex that defines the set of all scattered substrings of 𝑤𝑜𝑢𝑡,𝑖

as 𝑟𝑖 = 𝑤𝑜𝑢𝑡,𝑖 [0]? · · ·𝑤𝑜𝑢𝑡,𝑖 [|𝑤𝑜𝑢𝑡,𝑖 | − 1]?. In the case of (ii), for
each 𝑤𝑜𝑢𝑡,𝑖 ∈ 𝑜𝑢𝑡 (E) and the corresponding input string 𝑤𝑖𝑛,𝑖 , let

Algorithm 2: genConstForExample

Input: Regex Template 𝑡reg , Replacement Template 𝑡rep ,
Example 𝑒 = (𝑤,𝜂, 𝜃 )

Output: SMT Constraint 𝜙
1: 𝜙 ← ∧

𝑖∈[𝑛] (Σ𝑏∈𝔅𝑖
𝑏 = 1)

2: for 𝑝 ∈ {0, 1, · · · , |𝑤 |} do
3: 𝑆reg ← compute𝑆reg (𝑡reg,𝑤, 𝑝)
4: if 𝑝 is positive and 𝜂 [ 𝑗] = (𝑝, 𝑝′) for some 𝑗 then
5: 𝜙 ← 𝜙 ∧∨(𝑝′,Γ′,𝜙 ′ ) ∈𝑆reg (𝜙 ′ ∧ Φrep (𝑡rep, 𝜃 [ 𝑗], Γ′))
6: else if 𝑝 is negative then
7: 𝜙 ← 𝜙 ∧ ¬(∨(_,_,𝜙 ′ ) ∈𝑆reg 𝜙 ′)
8: return 𝜙

filter(𝑤𝑜𝑢𝑡,𝑖 ,𝑤𝑖𝑛,𝑖 ) = 𝑤 𝑓 ,𝑖 . Then, we can construct a regex that de-
fines the set of all strings that have 𝑤 𝑓 ,𝑖 as a scattered substring as
𝑟 ′
𝑖
= .∗ ·𝑤 𝑓 [0] · · · .∗ ·𝑤 𝑓 [|𝑤 𝑓 | − 1] · .∗. Therefore, we can construct

the set of strings that satisfies both (i) and (ii) as the intersection of
these regexes, i.e., 𝐿(𝑟1)∩𝐿(𝑟2) · · ·∩𝐿(𝑟 |𝑜𝑢𝑡 (E) | )∩𝐿(𝑟 ′1)∩𝐿(𝑟

′
2) · · ·∩

𝐿(𝑟 ′|𝑜𝑢𝑡 (E) | ). The condition is satisfied iff the intersection is not
empty.

For example, E = {L1𝑎M1 ⇝ L1𝑎𝑎𝑏M1, L1𝑏M1 ⇝ L1𝑎𝑏𝑏M1}. Here,
filter(𝑎𝑎𝑏, 𝑎) = 𝑏 and filter(𝑎𝑏𝑏,𝑏) = 𝑎. To check the condition, we
construct the regexes described above as follows: 𝑟1 = 𝑎?𝑎?𝑏?,
𝑟2 = 𝑎?𝑏?𝑏?, 𝑟 ′1 = .∗𝑏.∗, and 𝑟 ′2 = .∗𝑎.∗. In this case, 𝑎𝑏 ∈ 𝐿(𝑟1) ∩
𝐿(𝑟2) ∩ 𝐿(𝑟 ′1) ∩ 𝐿(𝑟

′
2). Therefore, the condition is satisfied and so

the instance is solvable.

5.2 SMT Constraint Generation
We describe the SMT constraint generation method. The SMT con-
straint contains the following boolean variables. For the regex tem-
plate 𝑡reg , we use the boolean variables 𝑣𝑎

𝑖
, such that 𝑣𝑎

𝑖
is true iff

the character set [𝐶] that corresponds to the 𝑖th hole of 𝑡reg accepts
the character 𝑎, i.e., 𝑎 ∈ 𝐶 . In what follows, we assume that each
node 𝑡 of a regex template is identified by a unique index 𝑐𝑡 . For
the replacement template 𝑡rep , we use three types of boolean vari-
ables: 𝑣𝑎

𝑖
, 𝑣$𝑗

𝑖
, and 𝑣

$𝑐𝑡
𝑖

, where 𝑎 ∈ Σ, 𝑖, 𝑗 ∈ N, and 𝑐𝑡 is an index
identifying a node of the AST of 𝑡reg , such that 𝑣𝑎

𝑖
(resp. 𝑣$𝑗

𝑖
) is

true iff the 𝑖th hole of 𝑡rep is 𝑎 (resp. the reference $ 𝑗 ). The variables
𝑣
$𝑐𝑡
𝑖

are used to insert new capturing groups. Specifically, 𝑣$𝑐𝑡
𝑖

is
true iff the subexpression that corresponds to the 𝑖th hole of 𝑡rep is
the reference $𝑐𝑡 with the capturing group whose index is 𝑐𝑡 and
whose immediate subexpression is 𝑡 newly inserted into 𝑡reg . The
insertion is done in a way that respects the 𝑛-ary operator normal
form (cf. Sec. 4.3). That is, we regard 𝑡 = ⊙(𝑡𝑘 , · · · , 𝑡𝑙 ) to be a subex-
pression of 𝑡 ′ = ⊙(𝑡1, 𝑡2, · · · , 𝑡𝑘 , · · · , 𝑡𝑙 , · · · , 𝑡𝑛) where ⊙ ∈ {·, |} so
that the index 𝑐𝑡 identifies 𝑡 and inserting a capturing group at 𝑡
changes 𝑡 ′ to ⊙(𝑡1, 𝑡2, · · · , 𝑡𝑘−1, (𝑐𝑡 ⊙(𝑡𝑘 , · · · , 𝑡𝑙 ))𝑐𝑡 , 𝑡𝑙+1, · · · , 𝑡𝑛) in
the new template.

With these variables, we build the SMT constraint 𝜙 as follows:
𝜙 =

∧
𝑒∈E genConstForExample(𝑡reg, 𝑡rep, 𝑒) . That is, for each ex-

ample 𝑒 ∈ E, we construct an SMT constraint that encodes the
condition for satisfying 𝑒 . Algorithm 2 shows genConstForExample.
First, it initializes 𝜙 with the constraints asserting that for each hole
in 𝑡rep , the number of boolean variables corresponding to the hole
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and assigned to true is exactly 1 (line 1). Here, 𝑛 is the number of
holes in 𝑡rep , and 𝔅𝑖 is the set of boolean variables that correspond
to the 𝑖th hole of 𝑡rep . Then, for each position 𝑝 s.t. ∃ 𝑗 . 𝜂 [ 𝑗] = (𝑝, _)
or 𝑝 is negative (cf. Sec. 5 Pruning Infeasible Templates), it sim-
ulates the matchings of regexes instantiated from 𝑡reg on 𝑤 at 𝑝
and computes the set 𝑆reg of succeeded matching results (line 3). A
matching result is of the form (𝑝′, Γ′, 𝜙 ′) where 𝑝′ is a position in𝑤 ,
Γ′ is an environment, and 𝜙 ′ is an SMT constraint. The triple means
that if 𝑡reg is instantiated into a regex 𝑟 according to a satisfying
assignment to 𝜙 ′, the matching of 𝑟 on 𝑤 at position 𝑝 moves the
position to 𝑝′ and the environment after the matching is Γ′. Using
these triples, we construct the SMT constraint for the example at the
position 𝑝 as follows: if ∃ 𝑗 .𝜂 [ 𝑗] = (𝑝, _), for each matching result
(𝑝′, Γ′, 𝜙 ′) ∈ 𝑆reg , we construct a constraint Φrep (𝑡rep, 𝜃 [ 𝑗], Γ′) that
encodes the condition that 𝑡rep outputs the correct output fragment
𝜃 [ 𝑗] under Γ′ and take the conjunction of the constraint with 𝜙 ′

(lines 4-5). If the position is negative, we take the negation of the
disjunction of all constraints for succeeding the matching (lines 6-
7). The encoding of the regex and replacement templates at the
position 𝑝 is done by the functions compute𝑆reg (line 3) and Φrep
(line 5), respectively. We elaborate on these functions in the rest of
this section.

SMT Constraint Generation for Regex Templates. We adopt
and extend the method introduced in [18]. Namely, like the method
of [18], compute𝑆reg uses the following judgment to obtain the
matching results: (𝑡,𝑤, 𝑝) d 𝑆reg , where 𝑡 is a regex template, 𝑤 is
an input string, 𝑝 is a position in 𝑤 , and 𝑆reg is the set of succeeded
matching results.4 However, to accommodate the insertion of new
captures that can be referred from the replacement, we extend the
method to keep track of substrings matched by subexpressions
by insert a virtual capturing group to each subexpression of 𝑡reg ,
except for the concatenation and the union (insertion of new cap-
turing groups at concatenations and unions are handled by the
SMT constraint for the replacement described below). Recall that
each node 𝑡 of the AST of a regex template has a unique index
𝑐𝑡 . We use the indexes for inserting virtual capturing groups. For
example, the result of inserting virtual capturing groups into 𝑎𝑏∗

is (𝑐𝑎𝑎)𝑐𝑎 (𝑐𝑏∗ (𝑐𝑏𝑏)∗𝑐𝑏 )𝑐𝑏∗ . Consequently, compute𝑆reg (𝑡reg,𝑤, 𝑝) =
𝑆reg , where (𝑡 ′reg,𝑤, 𝑝) d 𝑆reg and 𝑡 ′reg is the regex template ob-
tained from 𝑡reg by inserting virtual capturing groups as described
above.

SMT Constraint Generation for Replacement Templates. The
function Φrep is defined as: Φrep (𝑡rep,𝑤, Γ) = 𝜙rep ∧¬𝜙overlap. Here,
𝜙rep is the SMT constraint that encodes the condition that 𝑡rep is
consistent with the output fragment 𝑤 under the environment Γ
and ¬𝜙overlap is the SMT constraint that rules out assignments that
require inserting capturing groups into 𝑛-ary operators with an
overlap. We elaborate on the construction of 𝜙rep and 𝜙overlap below.

First, 𝜙rep is defined as: 𝜙rep = Φ′ (𝑡rep · ⊣,𝑤 · ⊣, Γ), where ⊣ ∉ Σ
is a special endmarker character that denotes the end of a sequence.
Φ′ is defined by: Φ′ (⊣,𝑤, Γ) = true if 𝑤 [0] =⊣ and false otherwise,
Φ′ (𝑎 · 𝑡rep,𝑤, Γ) = Φ′ (𝑡rep,𝑤 [1..|𝑤 |), Γ) if 𝑤 [0] = 𝑎 and false oth-
erwise, Φ′ ($𝑖 · 𝑡rep,𝑤, Γ) = Φ′ (𝑡rep, 𝑣, Γ) if 𝑤 = J$𝑖K Γ · 𝑣 and false

4This corresponds to (𝑡, 𝜖, 𝑤, 𝑝, ∅, forward, true) d (𝑆reg, _) , where 𝜖 is the initial
continuation regex template, ∅ is the initial environment, forward is the direction,
true is the flag, in the actual rules given in [18].

Algorithm 3: Φ$𝑐𝑡
Input: Replacement Template 𝑡rep = □𝑖 · 𝑡 ′rep , Output

fragment 𝑤 , Environment Γ
Output: SMT Constraint 𝜙

1: 𝜙 ← false
2: for all 𝑐𝑡 ∈ 𝑑𝑜𝑚(Γ) do
3: if 𝑡 = ⊙(𝑡1, 𝑡2, · · · , 𝑡𝑛) where ⊙ ∈ {·, |} then
4: for 𝑝 from 1 to 𝑛, 𝑝′ from 𝑝 + 1 to 𝑛 do
5: if ∃𝑢.𝑤 = Γ(𝑐𝑡𝑝 ) · · · Γ(𝑐𝑡𝑝′ ) · 𝑢 then

6: 𝜙 ← 𝜙 ∨ (Φ′ (𝑡 ′rep, 𝑢, Γ) ∧ 𝑣
$𝑐⊙(𝑡𝑝 · · ·𝑡𝑝′ )
𝑖

)
7: else if ∃𝑢.𝑤 = Γ(𝑐𝑡 ) · 𝑢 then
8: 𝜙 ← 𝜙 ∨ (Φ′ (𝑡 ′rep, 𝑢, Γ) ∧ 𝑣

$𝑐𝑡
𝑖
)

9: return 𝜙

otherwise, and Φ′ (□𝑖 · 𝑡rep,𝑤, Γ) = 𝜙𝑎 ∨ 𝜙$𝑗 ∨ Φ$𝑐𝑡 (□𝑖 · 𝑡rep,𝑤, Γ)
where □𝑖 denotes the 𝑖th hole in the replacement template passed
to Φrep . In the last case, 𝜙𝑎 = Φ′ (𝑤 [0] ·𝑡rep,𝑤, Γ) ∧𝑣𝑤 [0]

𝑖
if𝑤 [0] ≠⊣

and false otherwise, 𝜙$𝑗 =
∨

𝑗∈𝑑𝑜𝑚 (Γ) (Φ′ ($ 𝑗 · 𝑡rep,𝑤, Γ) ∧𝑣$𝑗
𝑖
), and

the function Φ$𝑐𝑡 is defined below.
Roughly, Φ′ evaluates 𝑡rep on 𝑤 from left to right and checks

whether the string obtained from the first element 𝑡 of 𝑡rep = 𝑡 ·𝑡 ′rep is
consistent with the prefix of 𝑤 . Specifically, Φ′ (𝑡 · 𝑡rep,𝑤, Γ) checks
whether JtK Γ is a prefix of 𝑤 if 𝑡 ≠ □ and otherwise, i.e., 𝑡 = □, it
simulates all the possible ways of filling the hole, i.e., filling the
hole with a character 𝑎, a reference $ 𝑗 s.t. (𝑗𝑟 ) 𝑗 appears in 𝑡reg , or a
reference $𝑐𝑡 that requires wrapping the subexpression 𝑡 with the
capturing group whose index is 𝑐𝑡 and refers to it. The first two cases
are analogous to the cases of Φ′ (𝑎 · 𝑡rep,𝑤, Γ) and Φ′ ($ 𝑗 · 𝑡rep,𝑤, Γ),
respectively, but with the difference that we take the conjunction of
the variable 𝑣𝑥

𝑖
, where 𝑥 ∈ {𝑤 [0], $ 𝑗}, with the SMT constraint con-

structed from the remaining encoding. The third case tries to insert
a new capturing group into a regex and refers to it. This is accom-
plished by the function Φ$𝑐𝑡 shown in Algorithm 3. The basic idea is
similar to the case for $ 𝑗 , except for the handling of 𝑛-ary operators.
Namely, for the case that the virtual capturing group under consid-
eration is an 𝑛-ary concatenation or union, we simulate all possible
insertions of a capturing group into the subexpressions. That is, for
an 𝑛-ary operator 𝑡 = ⊙(𝑡1, · · · , 𝑡𝑛) and each of its subexpression
𝑡 ′ = ⊙(𝑡𝑝 , · · · , 𝑡𝑝′ ) where 1 ≤ 𝑝 < 𝑝′ ≤ 𝑛, we simulate the inser-
tion ⊙(𝑡1, · · · , 𝑡𝑝−1, (𝑐𝑡 ′ ⊙(𝑡𝑝 , · · · , 𝑡𝑝′ ))𝑐𝑡 ′ , 𝑡𝑝′+1, · · · , 𝑡𝑛) (lines 3-6).

Secondly, 𝜙overlap is defined as: 𝜙overlap =
∨
(𝑣1,𝑣2 ) ∈𝑉 (𝑣1 ∧ 𝑣2),

where 𝑉 is the set of pairs (𝑣$𝑐𝑡
𝑖

, 𝑣
$𝑐𝑡 ′
𝑗
) of variables s.t. the subex-

pressions 𝑡 and 𝑡 ′ has an overlap. Precisely, (𝑣$𝑐𝑡
𝑖

, 𝑣
$𝑐𝑡 ′
𝑗
) ∈ 𝑉 if and

only if (1) 𝑣$𝑐𝑡
𝑖

and 𝑣
$𝑐𝑡 ′
𝑗

both appear in 𝜙rep , (2) neither 𝑡 is a sub-
tree of 𝑡 ′ nor 𝑡 ′ is a subtree of 𝑡 , and (3) 𝑡 and 𝑡 ′ share a common
node. For example, let us consider the regex template 𝑎𝑏𝑐 , the re-
placement template □1□2, and the output fragment 𝑎𝑏𝑏𝑐 . In this
case, the replacement $𝑐1$𝑐2 instantiated from □1□2 can satisfy
the output fragment 𝑎𝑏𝑏𝑐 if the references $𝑐1 and $𝑐2 refer to
the subexpressions 𝑎𝑏 and 𝑏𝑐 of the regex template, respectively.
However, if we insert the capturing groups in such a way, then it
yields an overlap of capturing groups, i.e., it yields the expression
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(𝑐1𝑎(𝑐2𝑏)𝑐1𝑐)𝑐2 which is invalid according to the syntax of regexes.
Therefore, to rule out such invalid insertions, we add the SMT
constraint ¬𝜙overlap = ¬(𝑣$𝑐𝑎𝑏1 ∧ 𝑣$𝑐𝑏𝑐2 ).

5.3 Pruning Infeasible Templates
We show the construction of over- and under-approximations of
a regex template for substring matching. The construction is com-
posed of two steps: approximation and addition of the context. The
first step uses the existing approximations of regex templates for
whole matching [17, 18, 28, 35]. Roughly, the existing methods
replace holes with .∗ or ∅, depending on the polarity. For exam-
ple, let us consider the regex template (?<=𝑎□)□(?!□). The over-
and under-approximations are (?<=𝑎.∗) .∗ (?!∅) and (?<=𝑎∅)∅(?!.∗),
respectively. The second step extends the approximations to be
context-aware.

We first consider the over-approximation. For a position 𝑝 s.t.
𝜂 [𝑖] = (𝑝, 𝑝′) for some 𝑖 and (𝑤,𝜂, 𝜃 ) ∈ E, we prepend ˆ𝑤 [0..𝑝)
and append 𝑤 [𝑝′ ..|𝑤 |)$ to the over-approximation, where ˆ and $
are anchors that match the start and end of a string, respectively, and
are syntactic sugar of lookarounds [26]. Specifically, let 𝑟⊤ be the
over-approximation. Then, the context-aware over-approximation
is 𝑟 ′⊤ = ˆ𝑤 [0..𝑝)·𝑟⊤ ·𝑤 [𝑝′ ..|𝑤 |)$, and we implement isFeasible(𝑡reg)
to reurn false if 𝑤 ∉ 𝐿(𝑟 ′⊤). For example, let us consider the regex
template (?<!□|𝑎)𝑏 and the example 𝑎L1𝑏M1𝑐 ⇝ _. Then, the context-
aware over-approximation 𝑟 ′⊤ is ˆ𝑎 · (?<!∅|𝑎)𝑏 ·𝑐$. Since 𝑎𝑏𝑐 ∉ 𝐿(𝑟 ′⊤),
we can safely avoid expanding the hole. Indeed, we cannot obtain
a solution from the regex template regardless of the replacement
template because the negative lookbehind always fails to match
the substring 𝑏.

We next consider making the under-approximation context-
aware. This is similar to the case of over-approximation, but in this
case, there is no need to care about the position where the match-
ing finishes. Therefore, we append .∗$ to the under-approximation.
Specifically, let 𝑟⊥ be the under-approximation. Then, for each
negative position 𝑝 , the context-aware under-approximation is
𝑟 ′⊥ = ˆ𝑤 [0..𝑝) ·𝑟⊥ · .∗$, and we implement isFeasible(𝑡reg) to return
false if 𝑤 ∈ 𝐿(𝑟 ′⊥). For example, let us consider the regex tem-
plate (?<!𝑑□) . and the example 𝑎L1𝑏M1𝑐 ⇝ _. The context-aware
under-approximation at position 2 is ˆ𝑎𝑏 · (?<!𝑑.∗) . · .∗$. We make
isFeasible(𝑡reg) return true if neither cases apply.

Finally, like the prior works [17, 18, 35], we use a variant preTest
of the pruning techniques (line 7). The variant is almost the same
as the over-approximation case of isFeasible except that we replace
holes with . instead of .∗.

6 OTHER REGEX-DEPENDENT STRING
FUNCTIONS

We discuss how to apply our core ideas to other representative
regex-dependent string functions such as search, replace, match,
and exec.

Like replaceAll, replace takes a string as the input, and a regex
and replacement pair as the parameter, and returns an output string.
The only difference is that, whereas replaceAll replaces all matched
substrings, replace replaces only the first matched substring. We
can adapt our algorithm to repair the parameters of replace by a

minor modification to the pruning techniques and the SMT con-
straint generation method for regex templates so that they stop
after reaching the only position denoted by the origin information.

The search function takes a string as the input and a regex as
the parameter, and returns the first matched position or −1 if there
are no substrings of the string matching the regex. We can treat the
repair problem for search as a special case of the repair problem
for replace. That is, we add an origin information to the position
of the example string where the substring should be matched (or
with no origin information for an example string on which the
to-be-synthesized function should return −1) and set the output
fragments for all examples and the replacement parameter to be
some fixed character 𝑎 ∈ Σ (our algorithm is optimized to not
modify the replacement in such a case).

The match function takes a string as the input and a regex as the
parameter, and returns a list of matched substrings. If the match
function has the global flag, it returns a list of all matched sub-
strings; otherwise, it returns a list containing only the first matched
substring. We can treat this in the same way as that of search de-
scribed above if it does not have a global flag. If it has, it can be
handled as replaceAll by letting the origin information identify
the positions of substrings that should be matched, and setting
the output fragments and the replacement parameter to a fixed
character.

The exec function takes a string as the input and a regex as the
parameter, and returns a list whose first element is the first matched
substring and the other elements are substrings extracted by cap-
turing groups. From this, it can be handled in a similar way as the
approach for search with a minor extension. That is, to address the
substrings to be extracted, we add information about the substrings
to be extracted into examples and extend the algorithm to check the
correctness of the extraction. The extension to the algorithm is only
a minor one because, as described in Sec. 5.2, the SMT constraint
generation method computes matching results that already include
the information about extraction (i.e., the environment) to handle
backreferences in regexes and references in replacements.

7 EVALUATION
We implemented our algorithm as a tool called R2-DS. It is written
in Java and uses Z3 [21] as the SMT solver. We evaluated R2-DS
to answer the following questions: (RQ1) Can R2-DS repair real-
world bugs of regex-dependent string functions in a reasonable
time? (RQ2) Are the repaired functions high-quality? (RQ3) How
impactful are the newly introduced techniques of context-aware
pruning and SMT-constraint-based insertion of captures? Our ex-
periments were conducted on Intel(R) Xeon(R) Platinum 8360Y
CPU @ 2.40GHz. To answer RQ3, we prepared R2-DS𝑤𝑜/𝑝 and R2-
DS𝑤𝑜/𝑐 , which are variants of R2-DS with the pruning technique
and the insertion of capturing groups disabled, respectively.

Benchmarks. We collected our benchmark tasks from GitHub
commits and StackOverflow posts. Specifically, we collected the
parameters of before and after repairs as the incorrect and correct
parameters. We prepared the examples by using the ones provided
in the commits/posts when they are available, and adding new ones
or removing inappropriate ones manually by ourselves as needed
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Table 1: Solved instances.

instances running time (seconds)
Solved (120) min med max

R2-DS 109 (90.8%) 0.117 0.763 1451.92
R2-DS𝑤𝑜/𝑝 90 (75%) 0.081 1.853 1795.3
R2-DS𝑤𝑜/𝑐 76 (63.3%) 0.145 0.853 681.805

(e.g., when none was provided or ones that trigger Regular Expres-
sion Denial-of-Service (ReDoS) vulnerability [19], which makes the
regex matching slow, were provided). As a result, for each instance,
we prepared at least 5 examples that have non-empty origin infor-
mation (we call them positive examples), at least 5 examples that
have empty origin information (we call them negative examples),
and at most 15 examples in total.5 From the examples, we used at
most 5 examples for the synthesis. The remaining examples are
used as left-out example sets to measure the quality of the repairs.

To find the commits and posts, we first looked at all commits
in the lists provided by [23] that studied string-related bugs in
a wide variety of GitHub projects written in JavaScript and [44]
that studied regex-related bugs in popular GitHub projects such
as Apache, Mozilla, Facebook, and Google. Among these, we have
collected the commits that change the parameters of replaceAll,
replace, or search.6 This gave us 34 benchmarks. Next, we searched
on GitHub Advanced Search and StackOverflow with keywords
such as “replaceAll”, “bug”, and “JavaScript” and collected the ones
that change the parameters of replaceAll, replace, or search. In total,
we collected 120 benchmark tasks (21 from [23], 13 from [44], and
86 from GitHub Advanced Search and StackOverflow). Among
the 120, 97 are instances of replaceAll, 15 are instances of replace,
and 8 are instances of search. The average and maximum sizes of
the regexes (resp. replacements), measured as the number of AST
nodes, are 16.43 and 193 (resp. 7.06 and 105). Also, 5 regexes have a
bounded repetition, 42 (resp. 4) regexes have a (resp. lazy) Kleene
star, 15 (resp. 2) regexes have a (resp. lazy) Kleene plus, 12 regexes
have an option, a regex has a backreference, 4 (resp. 1) regexes have
a negative lookbehind (resp. lookahead), 20 (resp. 14) regexes have
the anchor ˆ (resp. $) [26], and 20 replacements have a reference.
The data set is provided as supplementary material.

Validation. Our algorithm generates only correct parameters,
i.e., the function using the repaired parameters behaves consistently
with the examples. To verify this, we prepared a JavaScript pro-
gram and confirmed that the function with the repaired parameters
indeed returns correct outputs for all inputs in all cases.

RQ1: Efficiency To answer RQ1, we measured the minimum,
median, and maximum running times of solving the instances,
with a timeout of 30 minutes.7 Table 1 reports the results. R2-DS
could solve 90.8% of instances (91.7% of replaceAll instances, 80%
of replace instances, and 100% of search instances) within 50.71
seconds on average. In some cases, R2-DS could not find a solu-
tion within the time limit. We inspected these cases and found
that, as the existing methods for regex synthesis [17, 18, 28, 35],
R2-DS suffered from the cases that required large changes from
5In some cases, the correct regex is one that accepts any strings, and so we do not
prepare any negative examples for such cases.
6Due to time constraints, we do not evaluate R2-DS on match and exec. We leave them
for future work.
7On an instance that has a solution, R2-DS is guaranteed to terminate and return a
solution if given unbounded time and resource.

Figure 2: Scalability. Figure 3: F1 scores.

Figure 4: Impact of the pruning (left) and the capture inser-
tions (right).

the original. For example, R2-DS could not the repair of the regex
[␣]+, where ␣ is the white space, when the intended solution was
[␣]+(?=([ˆ’]∗’[ˆ’]∗’)∗[ˆ’]∗$) because such a repair requires ap-
pending a large expression. In summary, R2-DS can repair real-world
regex-dependent functions efficiently.

Additionally, we evaluated how R2-DS scales as the size of the
regex-dependent string function parameters increases, by compar-
ing the running times of R2-DS over the sizes. Figure 2 shows the
plot. The points on the border colored in blue show that R2-DS
could not find a solution within the time limit. As the figure shows,
R2-DS could find a solution in a short time, even for large param-
eters. In summary, the performance of R2-DS scales with respect to
the size of regex-dependent string functions.

RQ2: Quality Following the approach used in [18, 35], we mea-
sured the quality of the repairs with respect to left-out example sets.
That is, we measured the F1 scores using the left-out examples. The
F1 score is calculated as 𝐹1 = 2×𝑃×𝑅

𝑃+𝑅 , where 𝑃 is the precision and 𝑅

is the recall. The precision 𝑃 is calculated as 𝑃 = 𝑇𝑃
𝑇𝑃+𝐹𝑃 , where 𝑇𝑃

(resp. 𝐹𝑃 ) is the number of positive (resp. negative) examples that
are (resp. not) satisfied by the functions. The recall 𝑅 is calculated
as 𝑅 = 𝑇𝑃

𝑇𝑃+𝐹𝑁 , where 𝐹𝑁 is the number of positive examples that
are not satisfied by the functions. Therefore, the F1 score is between
0 and 1, and scores that are close to 1 imply the high quality of
the repairs. Figure 3 shows the results. The median and average of
the F1 scores are 1 and 0.84, respectively. We inspected the repairs
with low F1 scores and observed that R2-DS could not find a high-
quality repair when the instances require a large change from the
original. In summary, R2-DS can produce repairs that generalize well
to left-out example sets, and therefore of high-quality.

RQ3: Impact of the new techniques To evaluate the impact of
the new techniques on R2-DS’s overall performance, we conducted
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an ablation study in which we disabled some of them. In this evalu-
ation, we consider the two ablations: R2-DS without the pruning
techniques and R2-DS without insertions of capturing groups as
SMT constraints, which we refer to as R2-DS𝑤𝑜/𝑝 and R2-DS𝑤𝑜/𝑐 ,
respectively. We compared them against R2-DS, which incorporates
both techniques.

Figure 4 shows the results. The points above the diagonal indicate
that R2-DS could find a solution faster with the new technique
rather than without it. The points colored in blue on the border
indicate that the tool could not find a solution within the time
limit. Overall, R2-DS achieved 85.13× (resp. 35.01%×) speedups
against R2-DS𝑤𝑜/𝑝 (resp. R2-DS𝑤𝑜/𝑐 ) on average. We also observed
that R2-DS𝑤𝑜/𝑝 (resp. R2-DS𝑤𝑜/𝑐 ) could not solve 19 (resp. 33)
instances that R2-DS was able to solve. However, in a few cases, we
observed negative performance impacts. We inspected such cases
and observed that the new pruning technique can occasionally
introduce ReDoS (a similar issue was observed in [18] for regex
synthesis). As for the capture-insertion technique, the negative
effect was also due to it changing edit distance (cf. Sec. 4.3) between
templates that in some rare cases adversely affect their order in
the priority queue. In summary, the new pruning technique and
constraint-based capturing-group-insertion technique introduced in
the paper are highly impactful to the performance of the algorithm.

8 RELATEDWORK
There is a lot of work on synthesizing regexes from examples [1, 7–
10, 12, 17, 18, 24, 25, 27, 28, 30, 35, 37, 42, 45]. However, all of the
works focus only on regexes and do not consider replacements,
which are essential for regex-dependent string functions like re-
placeAll and replace. Additionally, all of them focus on whole string
matching and do not support substring matching, which is also
essential for many regex-dependent string functions. In fact, as
we showed in Sec. 4.4, our problem differs significantly from the
problems addressed in the prior works in that, our problem has
instances that do not have a solution, whereas the PBE regex syn-
thesis and repair problems addressed in the prior works always
have a solution. We mention that there are several methods for
generating regexes based on genetic programming [2–4] that con-
sider substring matching. However, they focus only on regexes and
cannot be synthesize or repair regex-dependent string functions
like replaceAll and replace that require replacements. Also, unlike
ours or other PBE-based methods, these methods do not guarantee
that the synthesis result is consistent with the given examples.

Origin information was introduced by Bojańczyk [6] to clarify
how the output is constructed from the input in transducers. In-
spired by the idea, we incorporated origin information into our
examples to specify the desired outputs in the PBE scenario. To our
knowledge, our work is the first to use origin information in the
setting of PBE-based synthesis or repair.

Finally, we mention that there are many works on detecting
bugs of regex-dependent string functions. Many of them focus
on the replaceAll function due to its practical importance [13–16].
However, these works focus on detecting bugs and do not consider
synthesis or repair.

9 CONCLUSION
This paper presented the first PBE-based method for repairing regex-
dependent string functions. Our algorithm builds on the techniques
from the prior work on PBE-based regex sythesis and repair but
incorporates the following key novelties to address the large search
space: origin information in examples to identify the locations of
substrings to be matched, a new substring-context-aware pruning
technique, and a novel use of SMT constraints to insert captures
that can referred from the replacement. Additionally, we identified
a novel necessary and sufficient condition that can be used to detect
and filter unrepairable instances. We implemented our algorithm as
a tool called R2-DS and evaluated it on real-world benchmarks. The
results show that R2-DS can repair real-world bugs efficiently, find
high-quality repairs, and the new pruning and capture insertion
techniques significantly improve the performance.
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