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Abstract. It is well known that the reachability problem for simply-
typed lambda calculus with recursive definitions and finite base-type
values (finitary PCF) is decidable. A recent paper by Dal Lago and
Ghyselen has shown that the same problem becomes undecidable when
the language is extended with algebraic effect and handlers (effect han-
dlers). We show that, perhaps surprisingly, the problem becomes decid-
able even with effect handlers when the type system is extended with
answer type modification (ATM). A natural intuition may find the re-
sult contradictory, because one would expect allowing ATM makes more
programs typable. Indeed, this intuition is correct in that there are pro-
grams that are typable with ATM but not without it, as we shall show in
the paper. However, a corollary of our decidability result is that the con-
verse is true as well: there are programs that are typable without ATM
but becomes untypable with ATM, and we will show concrete examples
of such programs in the paper. Our decidability result is proven by a
novel continuation passing style (CPS) transformation that transforms
an ATM-typable finitary PCF program with effect handlers to a finitary
PCF program without effect handlers. Additionally, as another applica-
tion of our CPS transformation, we show that every recursive-function-
free ATM-typable finitary PCF program with effect handlers terminates,
while there are (necessarily ATM-untypable) recursive-function-free fini-
tary PCF programs with effect handlers that may diverge. Finally, we
disprove a claim made in a recent work that proved a similar but strictly
weaker decidability result. We foresee our decidability result to lay a
foundation for developing verification methods for programs with effect
handlers, just as the decidability result for reachability of finitary PCF
has done such for programs without effect handlers.

1 Introduction

A popular approach to the verification of infinite-state programs is to abstract
the programs so that their base-type values are over finite domains, as seen in, for
example, predicate abstraction with CEGAR [4,7,3,39,28,18,42,36,34,9,8,19,26].

⋆⋆ Author’s current affiliation: Mizuho Bank, Ltd.
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Importantly, the reachability problem, which asks whether there exists an exe-
cution of the program reaching a certain program state (typically a designated
“error” state), is known to be decidable for such programs when they are simply-
typable, even when the programs contain higher-order and recursive functions.
That is, reachability for finitary PCF is decidable [27,16,41].1

Meanwhile, algebraic effects and handlers (effect handlers henceforth) are a
programming language feature for expressing computational effects such as mu-
table state, exception, and non-determinism [35]. They have a theoretical origin,
stemming from the research on denotational semantics [29,30,32,31,33,5], but are
also practically popular and have been incorporated into many popular program-
ming languages such as C, C++, Java, OCaml, and Haskell [21,6,45,38,12,1]. Un-
fortunately, a recent paper [20] has shown that reachability, which is decidable
for finitary PCF as mentioned above, becomes undecidable when the language
is extended with effect handlers.

In this paper, we show that this undecidability stems from the way the stan-
dard type systems for effect handlers are designed. More concretely, we show
that, perhaps surprisingly, extending the standard type system to allow answer
type modification (ATM) [10,2,15] recovers decidability. A natural intuition may
find the result contradictory because one would expect allowing ATM makes
more programs typable. Indeed, this intuition is correct in that there are pro-
grams that are typable with ATM but not without it, as we shall show in the
paper (cf. Example 5). However, a corollary of our decidability result is that
the converse is true as well: there are programs that are typable without ATM
but becomes untypable with ATM, and we will show concrete examples of such
programs in the paper (cf. Sections 3.2 and 3.3).

Our decidability result is proven by a novel continuation passing style (CPS)
transformation that transforms an ATM-typable finitary PCF program with
effect handlers to a finitary PCF program without effect handlers. Then, our de-
cidability result follows from the fact that the target of the CPS transformation,
finitary PCF, has decidable reachability as mentioned in the first paragraph of
this section.

Additionally, as another application of our CPS transformation, we show
that every recursive-function-free ATM-typable finitary PCF program with ef-
fect handlers terminates, while there are (necessarily ATM-untypable) recursive-
function-free finitary PCF programs with effect handlers that may diverge. Fi-
nally, we disprove in a claim made in a recent work that proved a similar but
strictly weaker decidability result [37]. In summary, the main contributions of
the paper are as follows:

– We show that reachability for ATM-typable finitary PCF with effect handlers
is decidable. A novel CPS transformation is introduced to prove the result.

1 The result can be seen as an extension of the decidability result for reachability
of pushdown systems [11], which correspond to first-order recursive programs, to
higher-order recursive programs. Also, the result should not be confused with the
result that observational equivalence for finitary PCF is undecidable [23].
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v ::= x | () | ⊤ | ⊥ | λx.c | rec x = v
c ::= return v | op v | v1 v2 | if v then c1 else c2 | let x = c1 in c2 | with h handle c

h ::= {return x = c, opi xi ki = ci}

Fig. 1. The syntax of FPCFeff .

– A corollary of our decidability result is that there are finitary PCF programs
typable without ATM but untypable with it, and we show concrete examples
of such programs.

– As another application of the CPS transformation, we show that recursive-
function-free ATM-typable finitary PCF programs with effect handlers al-
ways terminate, while there are (ATM-untypable) recursive-function-free
finitary PCF programs with effect handlers that may diverge.

– We disprove a claim made in a recent paper [37] regarding what the paper
calls the number of “active effect handlers”.

The rest of the paper is organized as follows. Section 2 defines preliminary no-
tions. Section 3 contains the main results mentioned above. Section 4 discusses
related work. Section 5 concludes the paper. For space, some materials are de-
ferred to the appendix.

2 Preliminaries

Figure 1 shows the syntax of untyped finitary PCF with effect handlers FPCFeff .
As in many presentations of effect handlers [35,15], we adopt the approach of call-
by-push-value λ calculus [22] to separate the syntax of expressions into values,
ranged over by meta variables v, and computations, ranged over by c. A handler,
ranged over by h, consists of a single return clause of the form return x = c and
finitely many operation clauses of the form opi xi ki = ci. The parameter ki in
an operation clause is called the continuation parameter. Recursive definitions
are given by the syntax rec x = v which recursively binds x in v.

Note that functions, arguments, and conditional expressions are restricted to
values, but this does not reduce expressivity because, for example, a function
application c v can be expressed as let x = c in x v using a fresh variable x. For
convenience, we often assume this convention and allow computations to appear
at positions where values are expected. For example, we may write x y z for
let w = x y in w z, adopting the usual convention that function application
is left associative. Conversely, when a value v appears at a position where a
computation in expected, we read it as return v. For example, we may write
λx.λy.x for λx.return λy.return x. We also write c1; c2 for let x = c1 in c2
where x is not free in c2. As usual, a program is a closed expression.

For concreteness, FPCFeff uses Booleans and unit as base-type values, but
our results can be easily be adopted to other finite base-type domains such as
variant types and integers modulo a constant. Note that FPCFeff is untyped.
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c1 → c2
let x = c1 in c → let x = c2 in c

(E-Let)
let x = return v in c → c[v/x]

(E-Ret)

(λx.c) v → c[v/x]
(E-LamApp)

(rec x = v) v′ → v[(rec x = v)/x] v′
(E-RecApp)

if ⊤ then c1 else c2 → c1
(E-IfTrue)

if ⊥ then c1 else c2 → c2
(E-IfFalse)

c → c′

with h handle c → with h handle c′
(E-Han)

return x = c ∈ h

with h handle return v → c[v/x]
(E-HRet)

op x k = c ∈ h

with h handle E[op v] → c[v/x, λy.with h handle E[return y]/k]
(E-Op)

Fig. 2. The semantics of FPCFeff .

Later in the paper, we present two type systems for it, an ordinary simple type
system ⊢st and a type system with answer-type modification ⊢atm, and investi-
gate how they affect the decidability of reachability.

Figure 2 shows the operational semantics of FPCFeff . Here, the evaluation
context E is defined by: E ::=[] | let x = E in c. The semantics is standard for a
language with effect handlers. A key rule is (E-Op) which invokes an operation.
An operation invocation is quite different from an ordinary function call, and
replaces the current context up to and including the nearest with-handle block
with the body of the operation clause c. The actual argument v gets bound to the
formal parameter x and the continuation parameter k gets the captured delimited
continuation λy.with h handle E[return y]. The behavior is similar to that of
the shift operator from delimited control [10,2]. Note that the evaluation context
E in the delimited continuation is wrapped in the with-handle block, following
the standard deep-handler semantics [14]. Another important rule is (E-HRet)
which processes a return clause invocation. Note that unlike the ordinary return
of (E-Ret), a return at a tail position of a with-handle block invokes the return
clause so that the returned result is (the evaluation result of) c[v/x] rather than
v. As standard, we write →∗ to denote the reflexive transitive closure of →. The
reachability problem is defined as follows.

Definition 1 (Reachability). The reachability problem is to decide, given a
program c, if c →∗ return⊤.

We note that the choice of ⊤ is arbitrary. We could have alternatively chosen
any other base-type value as the final value that we would like to decide if the
program returns or not.
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Example 1. Let cex1 be the following program.2

(with hst handle (rec loop = λ .let n = get () in
(if vfst n then if vsnd n then cincr ; loop () else ()
else cincr ; loop ())) (vtup ⊥ ⊥)); return ⊤

where

vtup ≜ λx.λy.λf.f x y vfst ≜ λp.p λx.λy.x vsnd ≜ λp.p λx.λy.y

cinc ≜ let n = get () in
if vfst n then if vsnd n then () else set (vtup ⊥ ⊤)
else if vsnd n then set (vtup ⊤ ⊤) else set (vtup ⊤ ⊥)

hst ≜ {return x = λs.x, set x k = λs.k () x, get x k = λs.k s s}

The handler hst adopts the standard state-passing approach for expressing mu-
table states with effect handlers [35]. Namely, the operation set updates the
current state with the given argument and the operation get returns the current
state. In this program, a state is a pair of Booleans encoding a 2-bit positive
integer. We use the standard λ calculus encoding of pairs: vtup , vfst , and vsnd
respectively creates a pair, projects the first element, and the projects the second
element. The computation cinc is effectful and uses get and set to increment the
current state by one. The initial state is set to be zero (i.e., the pair (⊥,⊥)), and
the recursive function defined by rec loop = . . . repeatedly increments the state
until the value becomes one (i.e., (⊤,⊥)). Because the initial state is zero, one
is eventually reached and the program cex1 terminates returning ⊤. The same
program would also terminate and return ⊤ if the state was initialized to be one,
but it would diverge if the state was initialized to be two (i.e., (⊥,⊤)) or three
(i.e., (⊤,⊤)). Therefore, the answer to the reachability problem for this program
would be yes in the first two cases and be no in the latter two cases.

Example 2. Next, let cex2 be the following program, also adopted from [35].

let r = (with hnd handle let x = if dec () then v0 else v1 in
let y = if dec () then v2 else v3 in vxor x y) in

if r then (rec f = λ .f ()) () else return ⊤

where

vxor ≜ λx.λy.if x then (if y then ⊥ else ⊤) else (if y then ⊤ else ⊥)

vor ≜ λx.λy.if x then ⊤ else if y then ⊤ else ⊥
hnd ≜ {return x = x, dec x k = vor (k ⊤) (k ⊥)}

Here, v0, v1, v2, v3 ∈ {⊥,⊤}. The handler hnd implements non-deterministic
choice by the dec operation whose clause executes the given delimited continu-
ation k, which is expected to take and return Booleans, with both ⊤ an ⊥, and
returns the disjunction of the two results. Therefore, the with-handle block will,

2 Recall the syntactic sugar such as the notation c1; c2 remarked earlier.
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for each of the four possibilities where x is bound to v0 or v1 and y is bound
to v2 or v3, computes the exclusive-or of x and y, and takes the disjunction
of the four results. Therefore, the with-handle block returns ⊥ if the Booleans
v0, v1, v2, v3 are all equal and otherwise returns ⊤, and the program cex2 returns
⊤ in the former cases and diverges in the later cases (due to the infinite loop
(rec f = λ .f ()) ()). Thus, the answer to the reachability problem would be
true in the former two cases (i.e., the four Booleans are all ⊤ or all ⊥) and be
no in the latter 14 cases.

b ::= unit | bool
σ ::= b | σ1 → σ2

Fig. 3. The simple types.

Figure 3 defines the simple types. The base types
are denoted by b. As usual, the function type con-
structor → associates to the right. Figure 4 shows
the typing rules of the simple type system ⊢st. The
type system is parameterized by a signature Σ that
assigns types to the operation names. The rules (St-Unit) to (St-Let) are
standard. The last four rules concern effect handlers, and they are also stan-
dard, matching those studied in prior work [35,20,17].3 Importantly, (St-Hdlr)
checks if a handler is well-typed by checking the well-typedness of the return
clause as well as that of each operation clause. Note that the type of the return
clause body, the types of the operation clause bodies, and the return types of the
continuation parameters, are the same type σ′. This type σ′ is called the answer
type, and the fact that all the answer types in a handler are the same signifies
that ⊢st lacks answer-type modification (ATM). We shall show in Section 3 a
type system that has ATM, ⊢atm, and show that the feature makes reachability
decidable.

Example 3. Recall cex1 and cex2 from Examples 1 and 2. Both programs are
⊢st-typable. For cex1 , the types of some subexpressions are as follows: vtup :
bool → bool → σt , vfst , vsnd : σt → bool, and cinc : unit, where σt = (bool →
bool → bool) → bool. And, the typing for the handler can be given by x :
σt ⊢st λs.x : σa for the return clause, and x : σt , k : unit → σa ⊢st λs.k () x : σa

and x : unit, k : σt → σa ⊢st λs.k s s : σa for the clauses of set and get
respectively, where σa = σt → unit. Note that the answer type is σa in all
clauses, indicating that ATM is not needed to type the example. Similarly, cex2
can be typed by typing the return clause as x : bool ⊢st x : bool, and the dec
clause as x : unit, k : bool → bool ⊢st vor (k ⊤) (k ⊥) : bool. Note that the
answer type is bool in all clauses in this typing, again indicating that ATM is
not needed for typing the example.

We say that a FPCFeff program c is ⊢st-typable if ⊢st c : σ for some σ.
We define (untyped) finitary PCF (without effect handlers) as the fragment
of FPCFeff without with h handle c or op v, and we refer to the fragment

3 Technically, [20,17] use weaker type systems that restrict (non-continuation) param-
eters of operations to base types. Our main result shows that ATM-typability makes
reachability decidable even when no such restriction is imposed (cf. Sections 3.4 and
4 for further discussion).
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Γ ⊢st () : unit
(St-Unit)

v ∈ {⊤,⊥}
Γ ⊢st v : bool

(St-Bool)
x : σ ∈ Γ
Γ ⊢st x : σ

(St-Var)

Γ, x : σ ⊢st c : σ
′

Γ ⊢st λx.c : σ → σ′ (St-Lam)
Γ, x : σ ⊢st v : σ

Γ ⊢st rec x = v : σ
(St-Rec)

Γ ⊢st v : bool Γ ⊢st c1 : σ Γ ⊢st c2 : σ

Γ ⊢st if v then c1 else c2 : σ
(St-If)

Γ ⊢st v1 : σ → σ′ Γ ⊢st v2 : σ

Γ ⊢st v1 v2 : σ′ (St-App)
Γ ⊢st c1 : σ Γ, x : σ ⊢st c2 : σ′

Γ ⊢st let x = c1 in c2 : σ′ (St-Let)

Γ ⊢st v : σ

Γ ⊢st return v : σ
(St-Ret)

Σ(op) = σ → σ′ Γ ⊢st v : σ

Γ ⊢st op v : σ′ (St-Op)

Γ, x : σ ⊢st: c : σ
′ Γ, xi : σi, ki : σ′

i → σ′ ⊢st ci : σ′ Σ(opi) = σi → σ′
i

Γ ⊢st {return x = c, opi xi ki = ci} : σ → σ′ (St-Hdlr)

Γ ⊢st h : σ → σ′ Γ ⊢st c : σ

Γ ⊢st with h handle c : σ′ (St-Han)

Fig. 4. The typing rules of the simple type system ⊢st.

by FPCF. As mentioned in the introduction, the reachability problem for ⊢st-
typable FPCF is decidable [27,16,41].

Theorem 1 ([27,16,41]). Reachability is decidable for ⊢st-typable FPCF.

By contrast, as also mentioned in the introduction, a recent paper [20] has shown
that the reachability problem is undecidable for ⊢st-typable FPCFeff .4

Theorem 2 ([20,17]). Reachability is undecidable for ⊢st-typable FPCFeff .

3 Main Results

τ ::= b | τ → ρ
ρ ::= τ/□ | τ/ρ1 ⇒ ρ2

Fig. 5. The ATM types.

Figure 5 shows the ATM types. The base types, b,
remain unchanged from those of ordinary simple
types. A value type, denoted by τ , is either a base-
type or a function type of the form τ ′ → ρ where
ρ is a computation type. A computation type is
either of the form τ/□ expressing a pure computation that returns a value of
type τ , or of the form τ/ρ1 ⇒ ρ2 expressing an effectful computation that
changes the answer type from ρ1 to ρ2 and returns a value of type τ .

4 An alternative proof is given in [17].
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Γ ⊢atm c1 : τ1/□ Γ, x : τ1 ⊢atm c2 : τ2/□

Γ ⊢atm let x = c1 in c2 : τ2/□
(T-LetP)

Γ ⊢atm c1 : τ1/ρ1 ⇒ ρ′1 Γ, x : τ1 ⊢atm c2 : τ2/ρ2 ⇒ ρ1

Γ ⊢atm let x = c1 in c2 : τ2/ρ2 ⇒ ρ′1
(T-LetIp)

Γ ⊢atm v : τ

Γ ⊢atm return v : τ/□
(T-Ret)

Σ(op) = τ → τ ′/ρ1 ⇒ ρ2 Γ ⊢atm v : τ

Γ ⊢atm op v : τ ′/ρ1 ⇒ ρ2
(T-Op)

Σ(opi) = τi → τ ′
i/ρi ⇒ ρ′i Γ, xi : τi, ki : τ ′

i → ρi ⊢atm ci : ρ′i

Γ ⊢atm {return x = c, opi xi ki = ci}
(T-Hdlr)

Γ ⊢atm h Γ ⊢atm c : τ/ρ ⇒ ρ′ Γ, x : τ ⊢atm c′ : ρ return x = c′ ∈ h

Γ ⊢atm with h handle c : ρ′
(T-Han)

Γ ⊢atm v : τ τ ≤ τ ′

Γ ⊢atm v : τ ′ (T-VSub)
Γ ⊢atm c : ρ ρ ≤ ρ′

Γ ⊢atm c : ρ′
(T-CSub)

Fig. 6. Representative typing rules of the ATM type system ⊢atm.

Figure 6 shows representative typing rules of the ATM type system ⊢atm.
We refer to Appendix A for the complete set. The type system is essentially
the ATM refinement type system proposed in [15], but without the refinement
types aspect that is orthogonal to our paper. (T-LetP) stipulates that if both
c1 and c2 are pure computations then the entire computation is also a pure
one. By contrast, (T-LetIp) says that if c1 is an effectful computation that
changes the answer type from ρ1 to ρ′1 and c2 is an effectful computation that
changes the answer type from ρ2 to ρ1, then the entire computation is an effectful
computation that changes the answer type from ρ2 to ρ′1. Note that the answer
types of the sub-computations are composed in a backward manner (cf. [15] for
the explanation). (T-Ret) and (T-OP) are analogous to the corresponding rules
(St-Ret) and (St-Ret) of ⊢st. In particular, the latter looks up the type of
the operation in the signature Σ whose return computation type τ ′/ρ1 ⇒ ρ2 is
an effectful one that changes the answer type from ρ1 to ρ2. (T-Hdlr) checks
that a handler is well-typed. Note that, unlike (St-Hdlr) of ⊢st, the rule allows
the operation clause bodies and their continuation parameters to have different
answer types, signifying that ⊢atm allows ATM. The return clause is typed in
(T-Han) and it is also allowed to have a different answer type. Additionally,
(T-Han) stipulates that the type of the with-handle block is changed from that
of the return clause body, ρ, to ρ′ by ATM. The last two rules, (T-VSub) and
(T-CSub), are subsumption rules for the subtyping relation ≤.
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A key subtyping rule is the following one that allows “embedding” a pure
computation type into an effectful computation type:

τ1 ≤ τ2 ρ1 ≤ ρ2
τ1/□ ≤ τ2/ρ1 ⇒ ρ2

(S-Embed)

The rule signifies that a pure computation can always be used where an effectful
one is expected. The remaining subtyping rules are defined inductively on the
structure of the types. We refer to Appendix B for the complete set of subtyping
rules. We say that a program c is ⊢atm-typable if ⊢atm c : τ/□ for some τ .5

Example 4. Recall cex1 and cex2 from Examples 1 and 2. Recall that both pro-
grams are ⊢st-typable as shown in Example 3. We show that both programs are
also ⊢atm-typable. For cex1 , the typing for the handler can be given by x : τt ⊢atm

λs.x : ρa for the return clause, x : σt, k : unit → ρa ⊢atm λs.k () x : ρa for the
set clause, and x : unit, k : τt → ρa ⊢atm λx.k s s : ρa for the get clause, where
τt = (bool → (bool → bool/□)/□) → bool/□ and ρa = (τt → unit/□)/□.

Typing these clauses does not need (T-LetIp) but only (T-LetP) because
the computation in the clauses are all pure.6 By contrast, the operation in-
vocations of get and set will respectively be given effectful computation types
τt/ρa ⇒ ρa and unit/ρa ⇒ ρa by (T-OP). The body of the with-handle block
will also be given an effectful computation type unit/ρa ⇒ ρa by using (T-
LetIp) to compose effectful computation types and giving the recursive func-
tion loop the type unit → unit/ρa ⇒ ρa. Therefore, ⊢atm cex1 : bool/□.
Similarly, cex2 can be ⊢atm-typed by typing the return clause and the dec clause
as x : bool ⊢atm x : ρb and x : unit, k : bool → ρb ⊢atm vor (k ⊤) (k ⊥) : ρb, re-
spectively, where ρb = bool/□. The invocations of dec in the with-handle-block
body can be given the type bool/ρb ⇒ ρb and so can the body itself.

Example 5. The previous example programs cex1 and cex2 were both ⊢st-typable
and ⊢atm-typable. Here, we show an example of a program that needs ATM to
be typed. That is, the program is ⊢atm-typable but not ⊢st-typable. Consider
the following program cex3 .

let r = (with {return x = x, op x k = k x;⊤} handle op (); ()) in
if r then ⊤ else ⊥

The program is ⊢atm-typable by giving the invocation of op the type unit/(unit/
□ ⇒ bool/□) and giving the variable r the type bool. However, it is not ⊢st-
typable because, in that type system, the return clause body needs to be given
the type unit whereas the op clause body needs to be given the type bool and
the rule for typing a handler (St-Hdlr) asserts that these types need to be the
same.
5 The restriction to pure types for ⊢atm-typable programs is for simplicity. It lets us
disregard the case the source program gets stuck with unhandled operation when
showing the correctness of the CPS transformation. It can be shown that reachability
remains decidable for ⊢atm-typable programs even without the restriction.

6 (T-LetP) is used when the trivial let bindings hidden by the notational convention
are expanded (cf. Section 2).
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As shown in the above example, there are programs typable with ATM but
not without it. In fact, one may naturally expect allowing ATM makes more
programs typable because it allows an operation invocation to change the type
of a with-handle block from that of the return clause body to that of an operation
clause body. Therefore, the following main result of the paper may come as a
surprise because, as remarked before, reachability is undecidable for ⊢st-typable
FPCFeff .

Theorem 3 (Decidability). Reachability is decidable for ⊢atm-typable FPCFeff .

The rest of this section is organized as follows. We prove Theorem 3 in Sec-
tion 3.1 by presenting a novel typing-derivation-directed CPS transformation
that transforms an ⊢atm-typable FPCFeff program to a ⊢st-typable FPCF pro-
gram. A corollary of Theorem 3 is the existence of a FPCFeff program that is
⊢st-typable but not ⊢atm-typable, and we present a concrete example of such a
program in Section 3.2 (Section 3.3 also has such an example). Section 3.3 de-
scribes another application of our CPS transformation. That is, we show there
that every ⊢atm-typable recursive-definition-free FPCFeff program terminates
while the same does not hold for ⊢st-typable ones. Section 3.4 disproves a claim
made in a recent paper [37] regarding what the paper calls active effect handlers.

3.1 Typing-Derivation-Directed CPS Transformation and the Proof
of Theorem 3

We prove Theorem 3 by presenting a CPS transformation that transforms an
⊢atm-typable FPCFeff program to a ⊢st-typable FPCF program. Then, Theo-
rem 3 follows from the fact that reachability is decidable for ⊢st-typable FPCF
programs.

We note that a CPS transformation for a language with effect handlers and
ATM has already been proposed in a recent work by Kawamata et al. [15]. How-
ever, their CPS transformation requires higher-rank parametric polymorphism
in an essential way to type the target of the transformation, and therefore, it
is insufficient for our purpose because reachability for FPCF programs typable
with a higher-rank parametric polymorphic type system is undecidable [40].

Our key observation is that the CPS transformation of [15] uses parametric
polymorphism to allow a pure computation to be used in contexts where an
effectful computation is expected. This is what subtyping is used for in ⊢atm.
Based on the observation, and inspired by the CPS transformation proposed in a
paper by Materzok and Biernacki [24], we propose a new CPS transformation for
effect handlers that is subtyping-aware so that the target of the transformation
can be typed without parametric polymorphism. The key idea, like that of [24],
is to make the transformation be directed by the typing derivation of the source
expression, instead of being only type-directed as more commonly seen for a CPS
transformation.

For convenience, we extend ⊢st-typed FPCF with records. That is, we extend
the syntax of expressions and simple types as follows.

v ::= · · · | {li = vi} c ::= · · · | v.l σ ::= · · · | {li : σi}
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JbK = b Jτ → ρK = JτK → JρK Jτ/□K = JτK
Jτ/ρ1 ⇒ ρ2K = JΣK → (JτK → Jρ1K) → Jρ2K
J{opi : τi → τ ′

i/ρi ⇒ ρ′iK = {opi : JτiK → (Jτ ′
iK → JρiK) → Jρ′iK}

Fig. 7. The CPS transformation of types.

The extension to the operational semantics and the typing rules is standard
and is given in Appendix C. We note that the reachability for FPCF remains
decidable with the record extension.7

Figure 7 shows the CPS transformation of types. As seen in the second to the
last rule, an effectful computation is transformed to a function that takes a trans-
formed signature (i.e., a record of the type JΣK), a transformed continuation of
the type JτK → Jρ1K, and returns a value of the type Jρ2K. For a type environment
Γ , we denote by JΓ K the CPS transformed environment {x : JτK | x : τ ∈ Γ}.

Next, we define the CPS transformation of subtyping derivations, which is
of the form Jτ1 ≤ τ2K for subtyping of value types and Jρ1 ≤ ρ2K for subtyping
of computation types. An important case is the transformation of a derivation
whose root is an instance of (S-Embed) shown below.

Jτ1/□ ≤ τ2/ρ1 ⇒ ρ2K = λx.λh.λk.Jρ1 ≤ ρ2K@(k@(Jτ1 ≤ τ2K@x)

where @ denotes a static application that is processed during the CPS transfor-
mation [13,15]. The complete set of the CPS transformation rules that concern
subtyping derivations is given in Appendix D.

Finally, we define the CPS transformation of typing derivations, which is of
the form JΓ ⊢atm v : τK for value expression typing and JΓ ⊢atm c : ρK for compu-
tation expression typing. An interesting rule is one concerning the subsumption
rule (T-CSub) shown below.

s
Γ ⊢atm c : ρ ρ ≤ ρ′

Γ ⊢atm c : ρ′

{
= Jρ ≤ ρ′K@ JΓ ⊢atm c : ρK

Note that it uses the transformation obtained from the subtyping ρ ≤ ρ′ to
properly CPS transform the source computation expression c that has been
CPS transformed with respect to the sub-derivation Γ ⊢atm c : ρ. Another
exemplifying transformation rule is one concerning the (T-Hdlr) rule for typing
a handler shown below.

t
Σ(opi) = τi → τ ′i/ρi ⇒ ρ′i Γ, xi : τi, ki : τ ′i → ρi ⊢atm ci : ρ′i

Γ ⊢atm {return x = c, opi xi ki = ci}

|

=
{
opi = λxi.λki.JΓ, xi : τi, ki : τ ′i → ρi ⊢atm ci : ρ′iK

}
Note that the transformed result is a record mapping each operation name opi

to a function obtained by transforming the typing derivation for the operation

7 This can be shown, for example, by encoding records as functions similarly to how
it was done for tuples in Example 1.
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clause body ci. The rule is used in the CPS transformation corresponding to the
typing rule (T-Han) for typing a with-handle block shown below.

s
Γ ⊢atm h Γ ⊢atm c : τ/ρ ⇒ ρ′ Γ, x : τ ⊢atm c′ : ρ return x = c′ ∈ h

Γ ⊢atm with h handle c : ρ′

{

= JΓ ⊢atm c : τ/ρ ⇒ ρ′K@ JΓ ⊢atm hK@λx. JΓ, x : τ ⊢atm c′ : ρK

The rule uses the transformation rule corresponding to (T-Hdlr) mentioned
above to transform the handler typing derivation Γ ⊢atm h to a record of op-
erations, transform the return clause typing derivation Γ, x : τ ⊢atm c′ : ρ,
and apply the transformation of the typing derivation for the with-handle block
body Γ ⊢atm c : τ/ρ ⇒ ρ′, which would be a function of the type JΣK → (JτK →
JρK) → Jρ′K, to the former and the λ abstraction of the latter. The passed record
will be looked up in the transformation of an operation invocation, as seen in
the following transformation rule corresponding to (T-Op).

s
Σ(op) = τ → τ ′/ρ1 ⇒ ρ2 Γ ⊢atm v : τ

Γ ⊢atm op v : τ ′/ρ1 ⇒ ρ2

{
= λh.λk.h.op JΓ ⊢atm v : τK k

We refer to Appendix E for the complete set of transformation rules that concern
typing derivations.

We show the correctness of our CPS transformation. First, we show that the
transformed program is a ⊢st-typable FPCF program, which follows immediately
from the following theorem that can be proven by induction on (sub)typing
derivations, and the fact that the right hands of the transformation rules do not
contain effect handlers.

Theorem 4 (Typability Preservation). The following holds.

1. If τ ≤ τ ′ then ⊢st Jτ ≤ τ ′K : JτK → Jτ ′K.
2. If ρ ≤ ρ′ then ⊢st Jρ ≤ ρ′K : JρK → Jρ′K.
3. If Γ ⊢atm v : τ then JΓ K ⊢st JΓ ⊢atm v : τK : JτK.
4. If Γ ⊢atm c : ρ then JΓ K ⊢st JΓ ⊢atm c : ρK : JρK.

Next, we show that the transformation preserves reachability. That is, if c is
⊢atm-typable by a derivation ⊢atm c : τ/□, then the answer to the reachability
problem for c is the same as that for J ⊢atm c : τ/□K. This is shown by the
following simulation theorem. Let →+ denote the transitive closure of →.

Theorem 5 (Simulation). Suppose ⊢atm c : τ/□. The following holds.

1. If c →∗ return v then ⊢atm v : τ and J ⊢atm c : τ/□K →+ J ⊢atm v : τK.
2. If J ⊢atm c : τ/□K →+ return v′ then there is v such that ⊢atm v : τ ,

J ⊢atm v : τK = v′, and c →∗ return v.

We refer to Appendix F for the proof. Therefore, given an ⊢atm-typable c, we
can decide the reachability of c by deciding the reachability of J ⊢atm c : τ/□K,
because J ⊢atm c : τ/□K is a ⊢st-typable FPCF program by Theorem 4 and the
reachability problem of ⊢st-typable FPCF is decidable. Thus, reachability for
⊢atm-typable FPCFeff is decidable. This completes the proof of Theorem 3.
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3.2 A Concrete Example of a ⊢st-Typable but ⊢atm-Untypable
Program

A corollary of our decidability result (Theorem 3) is that there are ⊢st-typable
programs that are not ⊢atm-typable, which may seem counter-intuitive because
one may naturally think that allowing ATM can only make more programs
typable. We give a concrete example of such a program. Let

cex4 ≜ rec f = λz.with h handle f () h ≜ {return x = op (), op x k = ()}

This program cex4 is ⊢st-typable. Namely, ⊢st cex4 : unit → unit with Σ(op) =
unit → unit. The recursively defined function f would also be given the type
unit → unit. We now show that cex4 is ⊢atm-untypable. Suppose for contradic-
tion that it is ⊢atm-typable. It must be the case that the recursive function f
is given the type unit → ρf for some ρf . Because the body of the with-handle
block is f (), by (T-Han), this ρf must satisfy ρf ≤ τ/ρ1 ⇒ ρ2 for some τ , ρ1,
and ρ2. However, by (T-Han) again, ρ2 must be a subtype of the with-handle
block and thus a subtype of ρf by (T-Rec). That is, we have the subtyping rela-
tion ρ2 ≤ τ/ρ1 ⇒ ρ2. We state the following general property of ATM subtyping,
which will be used in our argument.

Lemma 1. If ρ ≤ τ/ρ′ ⇒ ρ then ρ′ is pure.

Proof. By induction on the structure of ρ. ⊓⊔

Therefore, ρ1 must be pure. This is not possible because ρ1 must be a supertype
of the type of the return clause, but the return clause invokes the operation op
and therefore must be given an effectful type. Thus, cex4 is not ⊢atm-typable.

3.3 Termination and Non-Termination for ⊢atm-Typable and
⊢st-Typable Programs

The example of a ⊢st-typable but ⊢atm-untypable program given in Section 3.2
used a recursive definition in an essential way. A natural question is whether this
is always the case, that is, recursive definitions are necessary for a program to be
⊢st-typable but not ⊢atm-typable. We answer the question negatively by present-
ing a recursive-definition-free program that is ⊢st-typable but not ⊢atm-typable.
We do this by presenting a result that may be of independent interest and says
that any ⊢atm-typable recursive-definition-free program terminates whereas the
same is not true for the ⊢st-typable ones.

Consider the following recursive-definition-free program cex5 :

(with hst handle let f = λx.get () () in (set f ; f ())) λx.()

where hst is the mutable state handler from Example 1. This program essentially
implements the textbook encoding of an infinite loop by a mutable state (i.e.,
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Landin’s knot), and is non-terminating. Indeed, we have

cex5 → (λs.(λ .with hst handle vf ()) () vf ) λx.()
→ (λ .with hst handle vf ()) () vf → (with hst handle vf ()) vf
→ (with hst handle get () ()) vf → (λs.(λx.with hst handle x ()) s s) vf
→ (λx.with hst handle x ()) vf vf → (with hst handle vf ()) vf

where vf = λ .get () (). Because the last term is the same as the fourth term, the
evaluation diverges. The program cex5 is ⊢st-typable. Namely, it can be ⊢st-typed
by giving get the type unit → σt and set the type σt → unit in the operation
signature, where σt = unit → unit. The typing of the return, get , and set
clauses can be done in the same way as in Example 3 except for using the above
σt for the σt there. The with-handle block can be given the type unit with these
types of get and set . However, cex5 is not ⊢atm-typable. This follows from the
theorem below which can be easily shown by using our CPS transformation.

Theorem 6. Every ⊢atm-typable FPCFeff program without recursive definitions
terminates.

Proof. Let c be an ⊢atm-typable FPCFeff program without recursive definitions,
and let c′ = J ⊢atm c : τ/□K. Because our CPS transformation does not add new
recursive definitions, c′ also does not contain recursive definitions (in addition
to not containing effect handlers). By the results shown in Section 3.1, c′ is
⊢st-typable and c′ terminates iff c terminates. Because simply-typed λ calculus
(without recursive definitions or effect handlers) is terminating, c′ must termi-
nate and therefore so must c. ⊓⊔

3.4 Number of Active Effect Handlers Does Not Capture
Decidability

A recent paper [37] introduced a notion called active effect handlers. Their paper
claims that the boundedness of the number of active effect handlers character-
izes the decidability of reachability, and that the reason why ATM ensures the
decidability is because it ensures that this number is bounded. In this section,
we disprove this claim by presenting a class of programs with only a bounded
number of active effect handlers (in fact, with only at most one active effect
handler) but whose reachability is nonetheless undecidable.

Let succ be an operation, x0, x1, and f0, . . . , fn be variables where n ≥ 0.
Let us define the set of computation expressions Instn ≜ {ci,jinc | i ∈ {0, 1}, j ∈
{0, . . . , n}} ∪ {ci,j,mdec | i ∈ {0, 1}, j,m ∈ {0, . . . , n} ∪ {()} where

ci,jinc ≜ let xi = λy.succ xi in fj x0 x1

ci,j,mdec ≜ with {return x = fj x0 x1, succ xi k = fm x0 x1} handle xi ()

Then, let MM n be the class of programs of the form

mrec f0 = λx0.λx1.c0 and . . . and fn = λx0.λx1.cn in (f0 (λx.()) λx.());⊤
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where each ci ∈ Instn, and the mutual recursion mrec f0 = v0 and . . . and fn =
vn in c is syntactic sugar defined inductively by:

let f0 = rec f0 = (mrec f1 = v1 and . . . and fn = vn in v0) in . . .
let fn = rec fn = (mrec f0 = v0 and . . . and fn−1 = vn−1 in vn) in c

Let MM =
⋃

n∈N MM n. We refer to Appendix G for the proof of the following
theorem.

Theorem 7. Reachability for MM is undecidable.

We note that MM is ⊢st-typable. Indeed, any program in MM can be ⊢st-typed
by giving the operation succ the type σnat → unit and each recursive function
fi the type σnat → σnat → unit where σnat = unit → unit.

Next, we recall the notion of active effect handlers from [37]. Concretely, the
number of active effect handlers is said to be bounded for a program if there
is a non-negative integer n such that the evaluation of the program only yields
intermediate expressions of the form

. . . (with h1 handle . . . (with hm handle c) . . . ) . . .

for m ≤ n where c does not contain a with-handle block. Roughly, the number
of active effect handlers measures the number of pending effect handlers on the
call stack (when effect handlers are implemented by using a call stack, as often
done in real implementations).

It is easy to see that the number of active effect handlers for any program in
MM is bounded (in fact, by one), because a with-handle block will only appear
in the evaluation by a calling a recursive function whose body is some cdec,
but then a subsequent recursive function call can happen only by replacing this
with-handle block by the body of the return clause or the succ clause. Because
reachability for MM is undecidable as shown in Theorem 7, this disproves the
claim that the boundedness of the number of active effect handlers characterizes
the decidability of reachability for finitary PCF with effect handlers.

Additionally, a recent paper [20] contains a result stating that the reachability
problem becomes decidable when the operation clauses are restricted to only use
the given delimited continuation at tail positions. This may appear to contradict
Theorem 7 because the operation (i.e., succ) clause in MM does not use the
given delimited continuation. But it actually does not, because [20] restricts the
(non-continuation) parameters of operations to base types and thus disallows
programs like MM.8 The main result of our paper (Theorem 3) shows that such
restrictions on operation parameter types or delimited continuation usage are
not need for ATM to ensure the decidability of reachability.

4 Related Work

As mentioned in the introduction, our work is inspired by the prior research on
reachability for finitary PCF (without effect handlers). The problem was shown

8 The same restriction is used in [17].
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to be decidable [27,16,41], and the result has served as a foundation of methods
for verifying infinite-state higher-order-recursive programs by incorporating tech-
niques like predicate abstraction and CEGAR to abstract infinite data to finite
domains [4,7,3,39,28,18,42,36]. It is worth noting that such studies have extended
beyond just reachability (i.e., safety properties) and have also lead to methods for
verifying liveness properties by incorporating techniques like binary reachability
analysis and automata-theoretic verification method [43,34,9,8,19,26].

Inspired by this success and the popularity effect handlers, a recent paper by
Dal Lago and Ghyselen [20] has investigated the decidability of reachability for
finitary PCF extended with effect handlers, and has found that the problem is
undecidable. An alternative proof of this undecidability is also given in a recent
paper by Kobayashi [17]. In this paper, we have shown that this undecidability
comes from the way the standard type systems for effect handlers are designed,
and that, surprisingly, the problem becomes decidable when the type system
is extended to allow ATM. As remarked in Section 3.4, [20] contains a result
stating that the reachability problem becomes decidable if the operation clauses
are restricted to only use the captured delimited continuation at tail positions.
However, as we have shown there, this decidability result crucially relies on
the fact that operation parameters are restricted to base types in [20] because
allowing arbitrary (simple) types for operation parameters makes reachability
undecidable even with the restriction on the delimited continuation usage. The
decidability result of our paper shows that such restrictions on operation param-
eter types or delimited continuation usage are not needed for ATM to ensure
the decidability of reachability.

Our decidability result was proven by a novel typing-derivation-directed CPS
transformation that transforms an ATM-typable program with effect handlers
to a simply-typable program without effect handlers. Our CPS transformation is
based on the one proposed by Kawamata et al. [15] but using typing-derivation
dependency to eliminate parametric polymorphism. The elimination was cru-
cial for reducing the problem to the decidable problem of reachability for (non-
polymorphic) finitary PCF. As mentioned before, [15] used higher-rank para-
metric polymorphism in an essential way to allow pure computations to be used
in contexts where effectful ones are expected, and we have observed that this is
precisely what subtyping is used for by the ATM type system. We have adopted
the ideas from the (sub)typing-derivation-directed CPS transformation for de-
limited control presented in the paper by Materzok and Biernacki [24] to design
a new (sub)typing-derivation-directed CPS transformation for effect handlers.
The CPS transformation of [24] does not consider effect handlers, and, as men-
tioned above, the CPS transformation of [15] requires parametric polymorphism.
Our new CPS transformation makes a novel combination of the ideas from these
prior CPS transformations.

A recent paper by Sekiyama and Unno [37] proves a similar but strictly
weaker decidability result which essentially says that the typability in an ATM
type system lacking subtyping is sufficient for decidability of the reachability
for finitary PCF with effect handlers. Our paper proves a stronger result that
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says that typability in the ATM type system that supports subtyping is suf-
ficient for the decidability, and their result follows as an easy corollary of our
result. We note that subtyping makes a significant difference for an ATM type
system. Indeed, without subtyping, an ATM type system cannot, for example,
type a program that uses a pure function in contexts expecting effectful compu-
tations with different answer-type modifications. The lack of subtyping allowed
their paper to use a more straightforward CPS transformation obtained by sim-
ply dropping parametric polymorphism from the CPS transformation of [15].
By contrast, our CPS transformation makes a novel use of the ideas from the
(sub)typing-derivation-driven CPS transformation of [24] to eliminate paramet-
ric polymorphism without losing the support for subtyping. Additionally, we
have disproved an erroneous claim made in [37] regarding active effect handlers.
Namely, we have shown that the notion does not capture the decidability of
reachability for programs with effect handlers, and that boundedness of their
number is not the reason why ATM ensures the decidability of reachability.

5 Conclusion

We have studied the reachability problem for finitary PCF extended with effect
handlers. Recent work [20,17] have shown that the problem is undecidable, in
stark contrast to the case without effect handlers for which the problem is known
to be decidable [27,16,41]. In this paper, we have shown that the undecidability
comes from the way the standard type systems for effect handlers are designed.
Concretely, we have shown that, perhaps surprisingly, extending the type system
to allow ATM recovers decidability. A corollary of our decidability result is that,
perhaps counter-intuitively, there are program that are typable without ATM but
untypable with it, and we have shown concrete examples of such programs. Our
decidability result was proven by a novel typing-derivation-driven CPS transfor-
mation, and as another application of the CPS transformation, we have shown
that every ATM-typable recursive-definition-free finitary PCF programs termi-
nates while the same does not hold for the simply-typable ones. Finally, we have
disproved a claim made in a recent paper [37] by showing that active effect
handlers do not characterize the decidability of reachability for finitary PCF
with effect handlers. We foresee our decidability result to lay a foundation for
developing verification methods for programs with effect handlers, just as the
decidability result for reachability of finitary PCF has done such for programs
without effect handlers.
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Γ ⊢atm () : unit
(T-Unit)

v ∈ {⊤,⊥}
Γ ⊢atm v : bool

(T-Bool)

x : τ ∈ Γ
Γ ⊢atm x : τ

(T-Var)
Γ, x : τ ⊢atm c : ρ

Γ ⊢atm λx.c : τ → ρ
(T-Lam)

Γ, x : τ ⊢atm v : τ

Γ ⊢atm rec x = v : τ
(T-Rec)

Γ ⊢atm v : bool Γ ⊢atm c1 : ρ Γ ⊢atm c2 : ρ

Γ ⊢atm if v then c1 else c2 : ρ
(T-If)

Γ ⊢atm v1 : τ → ρ Γ ⊢atm v2 : τ

Γ ⊢atm v1 v2 : ρ
(T-App)

Γ ⊢atm c1 : τ1/□ Γ, x : τ1 ⊢atm c2 : τ2/□

Γ ⊢atm let x = c1 in c2 : τ2/□
(T-LetP)

Γ ⊢atm c1 : τ1/ρ1 ⇒ ρ′1 Γ, x : τ1 ⊢atm c2 : τ2/ρ2 ⇒ ρ1

Γ ⊢atm let x = c1 in c2 : τ2/ρ2 ⇒ ρ′1
(T-LetIp)

Γ ⊢atm v : τ

Γ ⊢atm return v : τ/□
(T-Ret)

Σ(op) = τ → τ ′/ρ1 ⇒ ρ2 Γ ⊢atm v : τ

Γ ⊢atm op v : τ ′/ρ1 ⇒ ρ2
(T-Op)

Σ(opi) = τi → τ ′
i/ρi ⇒ ρ′i Γ, xi : τi, ki : τ ′

i → ρi ⊢atm ci : ρ′i

Γ ⊢atm {return x = c, opi xi ki = ci}
(T-Hdlr)

Γ ⊢atm h Γ ⊢atm c : τ/ρ ⇒ ρ′ Γ, x : τ ⊢atm c′ : ρ return x = c′ ∈ h

Γ ⊢atm with h handle c : ρ′
(T-Han)

Γ ⊢atm v : τ τ ≤ τ ′

Γ ⊢atm v : τ ′ (T-VSub)
Γ ⊢atm c : ρ ρ ≤ ρ′

Γ ⊢atm c : ρ′
(T-CSub)

Fig. 8. The typing rules of the ATM type system ⊢atm.

We extend the simple type system ⊢st by adding the following rules.

Γ ⊢st vi : σi

Γ ⊢st {li = vi} : {li : σi}
(St-Record)

Γ ⊢st v : {li : σi}
Γ ⊢st v.li : σi

(St-Proj)

D CPS Transformation for Subtyping Derivations

Figure 10 shows the complete set of CPS transformation rules for subtyping
derivations.
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b ≤ b
(S-Base)

τ2 ≤ τ1 ρ1 ≤ ρ2
τ1 → ρ1 ≤ τ2 → ρ2

(S-Arr)
τ1 ≤ τ2

τ1/□ ≤ τ2/□
(S-Pure)

τ1 ≤ τ2 ρ2 ≤ ρ1 ρ′1 ≤ ρ′2

τ1/ρ1 ⇒ ρ′1 ≤ τ2/ρ2 ⇒ ρ′2
(S-Ipure)

τ1 ≤ τ2 ρ1 ≤ ρ2

τ1/□ ≤ τ2/ρ1 ⇒ ρ2
(S-Embed)

Fig. 9. The subtyping rules of ⊢atm.

Jb ≤ bK = λx.x
Jτ1 → ρ1 < τ2 → ρ2K = λf.λx.Jρ1 ≤ ρ2K@(f@(Jτ2 ≤ τ1K@x))

Jτ1/□ ≤ τ2/□K = λx.Jτ1 ≤ τ2K@x
Jτ1/ρ1 ⇒ ρ′1 ≤ τ2/ρ2 ⇒ ρ′2K

= λx.λh.λk.Jρ′1 ≤ ρ′2K@(x@h@λy.Jρ2 ≤ ρ1K@(k@(Jτ1 ≤ τ2K@y)))
Jτ1/□ ≤ τ2/ρ1 ⇒ ρ2K = λx.λh.λk.Jρ1 ≤ ρ2K@(k@(Jτ1 ≤ τ2K@x)

Fig. 10. The CPS transformation rules for subtyping derivations.

E CPS Transformation for Typing Derivations

Figure 11 shows the complete set of CPS transformation rules for typing deriva-
tions.

F Proof of Theorem 5

We first show the basic type soundness property for ⊢atm by proving the standard
preservation and progress properties [44]. Besides sanity checking that ⊢atm en-
joys the usual correctness properties expected for a type system, this is useful for
proving Theorem 5 because our CPS transformation is typing-derivation-driven
and the fact that typability is preserved allows us to pick a typing derivation for
c′ to CPS transform it when ⊢atm c : ρ and c → c′.

Lemma 2 (Progress). If ⊢atm c : ρ, then either

– c → c′ for some c′

– c = return v for some v, or
– c = E[op v] for some E, v, op.

Proof. Immediate from the definitions of ⊢atm and →. ⊓⊔

The following is also immediate.

Lemma 3 (Substitution). If Γ, x : τ ⊢atm c : ρ and Γ ⊢atm v : τ then
Γ ⊢atm c[v/x] : ρ.

We now show the preservation property.

Lemma 4 (Preservation). If Γ ⊢atm c : ρ and c → c′, then Γ ⊢atm c′ : ρ.
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Proof. We prove by induction on the derivation of c → c′. The cases besides
(E-Op) are immediate from Lemma 3. For the case (E-Op), we may assume
without loss of generality that the derivation Γ ⊢atm c : ρ is of the form

Γ ⊢atm h Γ, x : τ ⊢atm c′′ : ρ′ Γ ⊢atm E[op v] : τ/ρ′ ⇒ ρ

Γ ⊢atm with h handle E[op v] : ρ
(T-Han)

where return x = c′′ ∈ h and the subderivation Γ ⊢atm E[op v] : τ/ρ′ ⇒ ρ is of
the form

D
...

Γ ⊢atm E[op v] : τ/ρ′ ⇒ ρ

containing a subderivation D of the form

Γ (op) = τ2 → τ ′/ρ2 ⇒ ρ Γ ⊢atm v : τ2

Γ ⊢atm op v : τ ′/ρ2 ⇒ ρ
(T-Op)

By replacing this D, by the following derivation D′

Γ, y : τ2 ⊢atm return y : τ2/□ τ2/□ ≤ τ2/ρ2 ⇒ ρ2

Γ, y : τ2 ⊢atm return y : τ2/ρ2 ⇒ ρ2
(T-Csub)

we obtain the derivation

Γ ′ ⊢atm h Γ ′, x : τ ⊢atm c′′ : ρ′ Γ ′ ⊢atm E[return y] : τ/ρ′ ⇒ ρ2

Γ ′ ⊢atm with h handle E[return y] : ρ2
(T-Han)

where Γ ′ = Γ, y : τ2. Therefore, by (T-Hdlr) and Lemma 3, we have

Γ ⊢atm c[v/x, λy.with h handle E[return y]/k] : ρ

⊓⊔

We obtain the type soundness property as a corollary of the progress and the
preservation properties.

Corollary 1 (Type Soundness). If c is ⊢atm-typable and c →∗ c′, then either

– c′ → c′′ for some ⊢atm-typable c′′

– c′ = return v for some v, or
– c′ = E[op v] for some E, v, op.

The following lemma states that substitution and CPS transformation com-
mute.

Lemma 5. Let Dc be a typing derivation of Γ, x : τ ⊢atm c : ρ, and Dv be
a typing derivation of Γ ⊢atm v : τ . Then, JDc[Dv/x]K = JDcK[JDvK/x] where
Dc[Dv/x] denotes the derivation obtained by replacing occurrences of Γ, x :
τ ⊢atm x : τ by Dv.
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Proof. By induction on the derivation Dc ⊓⊔

Next we prove that one step of the source program evaluation can be simu-
lated by the transformed program.

Lemma 6 (One-Step Forward Simulation). Let D be a derivation of Γ ⊢atm

c : ρ and c → c′. If ρ is pure, then there is a derivation D′ of Γ ⊢atm c′ : ρ such
that JDK →+ JD′K. Otherwise, ρ is effectful, and there is a derivation D′ of
Γ ⊢atm c′ : ρ such that JDK@vh@vk →+ JD′K@vh@vk for any values vh and vk.

Proof. Let us fix a derivation D′ for c′ constructed by Lemma 4. We prove by
simultaneous induction on the derivation of c → c′ and the derivation D.

First, we consider the case the root of D is an instance of (T-CSub). D must
be of the form

Γ ⊢atm c : ρ′ ρ′ ≤ ρ

Γ ⊢atm c : ρ
(T-CSub)

Therefore, JDK = Jρ′ ≤ ρK@JΓ ⊢atm c : ρ′K and JD′K = Jρ′ ≤ ρK@JΓ ⊢atm c′ : ρ′K.
If ρ is pure, then we have

JDK = Jρ′ ≤ ρK@JΓ ⊢atm c : ρ′K →+ Jρ′ ≤ ρK@JΓ ⊢atm c′ : ρ′K = JD′K

Otherwise, ρ is effectful and is of the form τ/ρ1 ⇒ ρ2 for some τ , ρ1, and ρ2. If
ρ′ is a pure computation type of the form τ ′/□, then

JDK@vh@vk = Jρ′ ≤ ρK@JΓ ⊢atm c : ρ′K@vh@vk
= Jρ1 ≤ ρ2K@(vk (Jτ ′ ≤ τK@JΓ ⊢atm c : ρ′K))
→+ Jρ1 ≤ ρ2K@(vk (Jτ ′ ≤ τK@JΓ ⊢atm c′ : ρ′K))
= Jρ′ ≤ ρK@JΓ ⊢atm c′ : ρ′K@vh@vk
= JD′K@vh@vk

Otherwise, ρ′ is also effectful and is of the form τ ′/ρ′1 ⇒ ρ′2. Then,

JDK@vh@vk = Jρ′ ≤ ρK@JΓ ⊢atm c : ρ′K@vh@vk
= Jρ′2 ≤ ρ2K@(JΓ ⊢atm c : ρ′K@vh@λy.Jρ1 ≤ ρ′1K@(k@(Jτ ≤ τ ′K@y))
→+ Jρ′2 ≤ ρ2K@(JΓ ⊢atm c′ : ρ′K@vh@λy.Jρ1 ≤ ρ′1K@(k@(Jτ ≤ τ ′K@y))
= Jρ′ ≤ ρK@JΓ ⊢atm c′ : ρ′K@vh@vk
= JD′K@vh@vk

In what follows, we assume that the last rule used in D is not (T-CSub). We
prove by case analysis on the last rule of c → c′.

Suppose that it is (E-Let). Then, c → c′ is of the form

c1 → c′1
let x = c1 in c2 → let x = c′1 in c2

(E-Let)

If ρ is pure and is of the form τ/□, then D must be of the form

Γ ⊢atm c1 : τ1/□ Γ, x : τ1 ⊢atm c2 : τ/□

Γ ⊢atm let x = c1 in c2 : τ/□
(T-LetP)
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Therefore,

JDK = (λx.JΓ, x : τ1 ⊢atm c2 : τ/□K) JΓ ⊢atm c1 : τ1/□K
→+ (λx.JΓ, x : τ1 ⊢atm c2 : τ/□K) JΓ ⊢atm c′1 : τ1/□K
= JD′K

If ρ is effectful and is of the form τ/ρ1 ⇒ ρ2, then D must be of the form

Γ ⊢atm c1 : τ1/ρ
′ ⇒ ρ2 Γ, x : τ1 ⊢atm c2 : τ/ρ1 ⇒ ρ′

Γ ⊢atm let x = c1 in c2 : τ/ρ1 ⇒ ρ2
(T-LetIp)

Therefore,

JDK@vh@vk
= JΓ ⊢atm c1 : τ1/ρ

′ ⇒ ρ2K@vh@(λx.JΓ, x : τ1 ⊢atm c2 : τ/ρ1 ⇒ ρ′K@vh@vk)
→+ JΓ ⊢atm c′1 : τ1/ρ

′ ⇒ ρ2K@vh@(λx.JΓ, x : τ1 ⊢atm c2 : τ/ρ1 ⇒ ρ′K@vh@vk)
= JD′K@vh@vk

Next, suppose that the last rule is (E-Ret). Then, c → c′ must be of the
form

let x = return v in c2 → c2[v/x]

If ρ is a pure type of the form τ/□ then D must be of the form

Γ ⊢atm v : τ1
Γ ⊢atm return v : τ1/□ Γ, x : τ1 ⊢atm c2 : τ/□

Γ ⊢atm let x = return v in c2 : τ/□

Therefore,

JDK = (λx.JΓ, x : τ1 ⊢atm c2 : τ/□K) JΓ ⊢atm v : τ1K
→ JΓ, x : τ1 ⊢atm c2 : τ/□K[JΓ ⊢atm v : τ1K/x]
= JD′K

where the last equation follows by Lemma 5. If ρ is an effectful type of the form
τ/ρ1 ⇒ ρ2 then D must be of the form

D1 D2

Γ ⊢atm return v : τ1/ρ
′ ⇒ ρ2 Γ, x : τ1 ⊢atm c2 : τ/ρ1 ⇒ ρ′

Γ ⊢atm let x = return v in c2 : τ/ρ1 ⇒ ρ2

where D1 and D2 are as follows

Γ ⊢atm v : τ1
Γ ⊢atm return v : τ1/□

ρ′ ≤ ρ2
τ1/□ ≤ τ1/ρ

′ ⇒ ρ2

Therefore,

JDK@vh@vk
= Jρ′ ≤ ρ2K@((λx.JΓ, x : τ1 ⊢atm c2 : τ/ρ1 ⇒ ρ′K@vh@vk) JΓ ⊢atm v : τ1K)
→ Jρ′ ≤ ρ2K@(JΓ, x : τ1 ⊢atm c2 : τ/ρ1 ⇒ ρ′K[JΓ ⊢atm v : τ1K/x]@vh@vk)
= JD′K@vh@vk
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where the last equation follows by Lemma 5 again. The other cases can be
similarly shown by applying Lemma 5. ⊓⊔

The forward direction of the simulation theorem, that is, item 1 of Theorem 5,
follows by repeated applications of Lemma 6.

Next we prove the backward direction, that is, item 2 of Theorem 5. Because
c is ⊢atm-typable, by Corollary 1, the evaluation of c either (1) diverges, (2)
gets stuck by reaching some E[op v], or (3) halts by returning a value. Note
that the evaluation relation → is deterministic. If (1) is true, then by the for-
ward direction of the theorem that we have just shown, it must be the case
that the evaluation of J ⊢atm c : τ/□K also diverges. Next, suppose that (2) is
true. Then, by Lemma 4, it must be the case that ⊢atm E[op v] : τ/□, but
such a typing is not possible because E[op v] can only be given an effectful
computation type. Finally, suppose that (3) is true. Let c →∗ return v. It suf-
fices to show that J ⊢atm v : τK = v′ where J ⊢atm c : τ/□K →∗ return v′. But,
J ⊢atm c : τ/□K →∗ J ⊢atm return v : τ/□K by Lemma 6. Therefore, by the de-
terminism of the evaluation relation, it must be the case that J ⊢atm v : τK = v′.
This complete the proof of Theorem 5.

G Proof of Theorem 7

We note that the proof of the theorem, as well as the construction of the class
of programs MM , is an adaptation of the proof of the undecidability of the
reachability problem for finitary PCF extended with exceptions given in [17].
Namely, we adapt their proof to our setting by implementing the exceptions in
their programs by effect handlers, following the usual approach of implementing
exceptions by effect handlers [35].9

First, we recall 2-register Minsky machines [25]. A 2-register Minsky machine
is a tuple M = (Q, δ, q0) where Q is a finite set of states, q0 ∈ Q is the initial
state, δ is the transition function which maps each state q ∈ Q to the set of
instructions of the following three forms:

Inc ri; goto q′ Increment register ri (i ∈ {0, 1}) and go to state q′ (q′ ∈ Q).
If ri = 0 then goto q1 else dec ri; goto q2 Check the value of register ri (i ∈

{0, 1}). If the value is 0 then go to state q1 (q1 ∈ Q). Otherwise, decre-
ment ri and go to state q2 (q2 ∈ Q).

Halt Halt the machine.

A configuration of the machine is a triple (q, n0, n1) where q ∈ Q and n0 and n1

are non-negative integers denoting the values of the two registers. The computa-
tion of the machine starts from the initial configuration (q0, 0, 0) and terminates
when the Halt instruction is reached. The halting problem for 2-counter Minsky

9 The paper [17] contains a proof that reachability for finitary PCF extended with
effect handlers is undecidable (with a non-ATM type system), but it uses a different
class of programs because the restriction on operation parameters mentioned in
Section 3.4 prevents them from using MM .
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machines is to decide if the computation of a given 2-counter Minsky machine
terminates.

Theorem 8 ([25]). The halting problem for 2-counter Minsky machines is un-
decidable.

It is easy to see that each program in MM n implements an n+1-state 2-
register Minsky machine by noticing that the recursive functions f0, . . . , fn rep-
resent the n+1 states with f0 in particular representing the initial state q0, each
ci,jinc implements the increment instruction that increments the register ri and

go to the state represented by fj , and each ci,j,mdec implements the check-and-
decrement instruction that checks the register ri, goes to the state represented
by fj if it is 0 and otherwise decrements ri and goes to the state represented by
fm. The halt instruction is implemented by (). Therefore, a program in MM re-
turns ⊤ iff the corresponding 2-register Minsky machine halts. Thus, the halting
problem for 2-counter Minsky machines is reduced to the reachability problem
for MM . This completes the proof of Theorem 7.
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JΓ ⊢atm () : unitK = ()

s
v ∈ {⊤,⊥}

Γ ⊢atm v : bool

{
= v

s
x : τ ∈ Γ

Γ ⊢atm x : τ

{
= x

s
Γ, x : τ ⊢atm c : ρ

Γ ⊢atm λx.c : τ → ρ

{
= λx. JΓ, x : τ ⊢atm c : ρK

s
Γ, x : τ ⊢atm v : τ

Γ ⊢atm rec x = v : τ

{
= rec x = JΓ, x : τ ⊢atm v : τK

s
Γ ⊢atm v : bool Γ ⊢atm c1 : ρ Γ ⊢atm c2 : ρ

Γ ⊢atm if v then c1 else c2

{

= if JΓ ⊢atm v : boolK then JΓ ⊢atm c1 : ρK else JΓ ⊢atm c2 : ρK

s
Γ ⊢atm v1 : τ → ρ Γ ⊢atm v2 : τ

Γ ⊢atm v1 v2 : ρ

{
= JΓ ⊢atm v1 : τ → ρK JΓ ⊢atm v2 : τK

s
Γ ⊢atm c1 : τ1/□ Γ, x : τ1 ⊢atm c2 : τ2/□

Γ ⊢atm let x = c1 in c2 : τ2/□

{

= (λx. JΓ, x : τ1 ⊢atm c2 : τ2/□K) JΓ ⊢atm c1 : τ1/□K

s
Γ ⊢atm c1 : τ1/ρ1 ⇒ ρ′1 Γ, x : τ1 ⊢atm c2 : τ2/ρ2 ⇒ ρ1

Γ ⊢atm let x = c1 in c2 : τ2/ρ2 ⇒ ρ′1

{

= λh.λk. JΓ ⊢atm c1 : τ1/ρ1 ⇒ ρ′1K@h@(λx. JΓ, x : τ1 ⊢atm c2 : τ2/ρ2 ⇒ ρ1K@h@k)

s
Γ ⊢atm v : τ

Γ ⊢atm return v : τ/□

{
= JΓ ⊢atm v : τK

s
Σ(op) = τ → τ ′/ρ1 ⇒ ρ2 Γ ⊢atm v : τ

Γ ⊢atm op v : τ ′/ρ1 ⇒ ρ2

{
= λh.λk.h.op JΓ ⊢atm v : τK k

t
Σ(opi) = τi → τ ′

i/ρi ⇒ ρ′i Γ, xi : τi, ki : τ ′
i → ρi ⊢atm ci : ρ′i

Γ ⊢atm {return x = c, opi xi ki = ci}

|

=
{
opi = λxi.λki.JΓ, xi : τi, ki : τ ′

i → ρi ⊢atm ci : ρ′iK
}

s
Γ ⊢atm h Γ ⊢atm c : τ/ρ ⇒ ρ′ Γ, x : τ ⊢atm c′ : ρ return x = c′ ∈ h

Γ ⊢atm with h handle c : ρ′

{

= JΓ ⊢atm c : τ/ρ ⇒ ρ′K@ JΓ ⊢atm hK@λx. JΓ, x : τ ⊢atm c′ : ρK

s
Γ ⊢atm c : ρ ρ ≤ ρ′

Γ ⊢atm c : ρ′

{
= Jρ ≤ ρ′K@ JΓ ⊢atm c : ρK

s
Γ ⊢atm v : τ τ ≤ τ ′

Γ ⊢atm v : τ ′

{
= Jτ ≤ τ ′K@ JΓ ⊢atm v : τK

Fig. 11. The CPS transformation rules for typing derivations.
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